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1 Notation

We use 0p:q to denote a p× q real matrix filled with 0, one of the size subscript is dropped when its clear from
the context (e.g stacking with another matrix).

Sc,n represents a permutation matrix such that Sc,nx = y, where x = [1, 2, 3.., n, ...1, 2, 3, ...n] which contains
c repetitions of [1, 2, 3, ..., n], y = [1 · 1Tn , ..., n · 1Tn ]T .

Fn represents the 2D DFT matrix such that X̂ = FnXFn where X ∈ Rn×n and X̂ is the 2D fourier
transform of X.

2 Preliminaries

Theorem 2.1 If exists a non-negative diagonal Λ such that[
γI −HTH −HTG−WTΛ

−GTH − ΛW 2Λ−GTG

]
≽ 0

then h(x) = Hx+Gσ(Wx+ b) is
√
γ-Lipschitz

Definition 2.1 (Cayley Transform for Square Matrix) Define the Cayley Transform for an arbitrary
square matrix Cayley:Cm×m → Cm×m as

Cayley(B) = (Im −B +B∗)(Im +B −B∗)−1

Note that if B is real, then B − B∗ is real and skew-symmetric, then Cayley(B) is an orthogonal matrix.
By Proposition A.7 in [1], we define the Cayley Transform for an tall matrix

Definition 2.2 For a tall matrix W =

[
U
V

]
∈ R(m+n)×m, U ∈ Rm×m, V ∈ Rn×m, define the Cayley Transform

of W as

Cayley(W ) = Cayley(
[
W 0:,n

]
)

[
Im
0n,:

]
=

[
(Im − U + U∗ − V ∗V )(Im + U − U∗ + V ∗V )−1

−2V (Im + U − U∗ + V ∗V )−1

]
it can be easily proved that Cayley(W ) is orthogonal (i.e Cayley(W )TCayley(W ) = Im) if W is real.

3 Fully Connected Layer

Theorem 3.1 Let WA ∈ Rnout×nout,WB ∈ Rnin×nout, λ ∈ Rnout,[
GT

HT

]
= Cayley(

[
WA

WB

]
)

Λ = diag(0.5 + exp(λ))

W = −√
γΛ−1GTH

then h(x) =
√
γHx+Gσ(Wx+ b) is

√
γ-Lipschitz.
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4 Convolution Layer

By Corollary A.1.1 in [1], if C ∈ R(cout·n2)×(cin·n2) represents a 2D circular convolution, then it can be
diagonalized as Fcout,n2CF∗

cin,n2 = D, where Fc,n2 = Sc,n2(Ic
⊗

(Fn

⊗
Fn)), D is a block-diagonal matrix

with n2 blocks each with size cin× cout
We can derive a lemma similar to Lemma A.4 in [1]

Lemma 4.1 Let C be a circular convolution matrix maps from cin channels to cout channels, then padding
C with pn2 columns of zeros on the right and qn2 columns of zeros at the bottom is equivalent to padding each
diagonal block of D with p columns of zeros on the right and q rows of zeros at the bottom.

diag
( [D1 0:,p

0q,: 0q:p

]
...

[
Dn2 0:p
0q: 0q:p

] )
= Fcout+q,n2

[
C 0:pn2

0qn2: 0qn2:pn2

]
F∗

cin+q,n2

Lemma 4.1 is illustrated in ”Lemma4.1.jpg”.
We can also derive a lemma similar to Lemma A.5 in [1]

Lemma 4.2 Projecting out qn2 rows and pn2 columns of C is equivalent to projecting out q rows and p columns
of each Di [

Iqn2 0
]
C

[
Ipn2

0

]
= F∗

q,n2diag
( [

Iq 0
]
D1

[
Ip
0

]
, ...,

[
Iq 0

]
Dn2

[
Ip
0

] )
F∗

p,n2

[
0 Iqn2

]
C

[
Ipn2

0

]
= F∗

q,n2diag
( [

0 Iq
]
D1

[
Ip
0

]
, ...,

[
0 Iq

]
Dn2

[
Ip
0

] )
F∗

p,n2

Theorem 4.3 Let WA ∈ Rcout×cout×n×n,WA ∈ Rcin×cout×n×n be convolution weights, and CA ∈ Rcout·n2×cout·n2

, CA ∈
Rcin·n2×cout·n2

be the convolution matrix induced by WA and WB, then[
Icout·n2 0:cin·n2

]
Cayley(

[
CA 0:cin·n2

CB 0:cin·n2

]
)

[
Icout·n2

0cin·n2:

]
= F∗

cout,n2diag

([
Icout 0:cin

]
Cayley(

[
D1 0:cin

]
)

[
Icout
0cin:

]
, ...

)
Fcout,n2

[
0:cout·n2 Icin·n2

]
Cayley(

[
CA 0:cin·n2

CB 0:cin·n2

]
)

[
Icout·n2

0cin·n2:

]
= F∗

cin,n2diag

([
0:cout Icin

]
Cayley(

[
D1 0:cin

]
)

[
Icout
0cin:

]
, ...

)
Fcout,n2

where [
CA

CB

]
= F∗

cin+cout,n2diag(D1, ..., Dn2)Fcout,n2

with each Di has shape (cin+ cout)× cout

In a convolution layer, the convolution Conv(X;W ) can be written as Cvec(X) where C is the convolution
matrix induced by W . Thus we can write the lipschitz convolution residual layer in a similar structure as in
the fully-connected layer

h(x) =
√
γHvec(x) +Gσ(Wvec(x) + b)

where W = −√
γΛ−1GTH and

[
GT

HT

]
= Cayley(

[
CA

CB

]
), CA and CB are convolution matrix induced by WA

and WB . By theorem 4.3, we have

GT = F∗
cout,n2diag

(
GT

1 , ..., G
T
n2)Fcout,n2

HT = F∗
cout,n2diag

(
HT

1 , ...,H
T
n2)Fcout,n2

where

[
GT

i

HT
i

]
= Cayley(Di), and the operations Hvec(x), Gvec(x), GTHvec(x) can be efficiently computed

with FFT, permutation and batch matrix multiplication as in [1]
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