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Jiarui

August 10, 2023

1 Notation

We use 0p:4 to denote a p x g real matrix filled with 0, one of the size subscript is dropped when its clear from
the context (e.g stacking with another matrix).

Se.n Tepresents a permutation matrix such that S, ,x = y, where z = [1, 2, 3..,n, ...1,2, 3, ...n] which contains
¢ repetitions of [1,2,3,...,n], y=[1-1L ... n- 17T,

F,, represents the 2D DFT matrix such that X = F,XF, where X € R"*" and X is the 2D fourier
transform of X.

2 Preliminaries

Theorem 2.1 If exists a non-negative diagonal A such that

v[—HTH —HTG-WTA
-GTH - AW 2A — GTG

then h(z) = Hx + Go(Wx +b) is \/7-Lipschitz

=0

Definition 2.1 (Cayley Transform for Square Matrix) Define the Cayley Transform for an arbitrary
square matriz Cayley:C™>*"™ — C™*™ qs

Cayley(B) = (I, — B+ B*)(I,, + B— B*)™!

Note that if B is real, then B — B* is real and skew-symmetric, then Cayley(B) is an orthogonal matrix.
By Proposition A.7 in [1], we define the Cayley Transform for an tall matrix

Definition 2.2 For a tall matric W = [g] e R(mtn)xm 17 ¢ Rmxm y ¢ R"*™  define the Cayley Transform
of W as

_ * * _ * * —1
Cayley(W) = Cagley((W 0,,]) [In} _ [(Im U+U* = V'V +U —U*+V*V)

O, 2V +U -U*+V*V)~L
it can be easily proved that Cayley(W) is orthogonal (i.e Cayley(W)T Cayley(W) = I,,,) if W is real.

3 Fully Connected Layer
Theorem 3.1 Let W, € Rrowtxnout 1/, ¢ Rrinxnout '\ ¢ Rnout,
ar] W
|:HT:| - Cayley( |:WB:| )
A = diag(0.5 + exp()))
W= /A 'GTH
then h(x) = /YHx + Go(Wx +b) is \/7-Lipschitz.



4 Convolution Layer

By Corollary A.1.1 in [1], if C € R(coutn®)x(cin-n?) represents a 2D circular convolution, then it can be
diagonalized as Feoys n2CFy o = D, where F, 2 = S;2(I Q(F, @ Fy)), D is a block-diagonal matrix
with n? blocks each with size cin x cout

We can derive a lemma similar to Lemma A.4 in [1]

Lemma 4.1 Let C be a circular convolution matriz maps from cin channels to cout channels, then padding
C with pn? columns of zeros on the right and qn® columns of zeros at the bottom is equivalent to padding each
diagonal block of D with p columns of zeros on the right and q rows of zeros at the bottom.

. D; 0. D,2 0. C 0.pn2 "
dZag( |:O 1 ~7p:| e |: O p:| ) = }—cout—i-q,nQ |:0 :p :| cin-tq,n?
q:

q: Oq:p qup gqn2: an2:pn2
Lemma 4.1 is illustrated in ”Lemma4.1.jpg”.
We can also derive a lemma similar to Lemma A.5 in [1]

Lemma 4.2 Projecting out gn? rows and pn® columns of C' is equivalent to projecting out g rows and p columns
of each D;

Ipn2 . I I .
[T 0] C [ " ] = F, pediag([I; 0] Dy {(ﬂ soor g 0] D2 {5’]) 2

Ty . I L)\ o
0 ang}c[pg]:fqﬁdmg([o I,] Dy Lﬂ [0 1] D2 {6)]) 2

Theogem 4.:2)’ Let WA c Rcoutxcoutxnxn, WA c Rcinxcoutxnxn be convolution weights, and OA c Rcaut-n2><cout-n2, CA c
Retnnxcoutn” pe the convolution matriz induced by W4 and Wp, then

[ICOUt'"Z 0:cin<n2] Cayley( [gg OZCin%Q:l) |:Icout-n2:| = ]::out,n2 dzag( [Icout Ozcin] Cayley( [Dl Oczn]) |:ICOUt:| ,> fcout,n"’

:cin-n? Ocin-nQ: Ocin:

40in.n2:|) |:Icout.n2:| = ]:smm'zdwg( [Ozcout Imn} Cayley( [Dl Omn]) l:[cout] a-~-)]:cout,n2

:cin-n? 0cin~n2: Ocin:

0
Ca O
[Ozcout~n2 Icin'n2] Cayley( [Cg 0

where

Ca . .
|:CB:| = Frintcoutn2d109(D1; ..y Dp2) Feout n2

with each D; has shape (cin + cout) x cout

In a convolution layer, the convolution Conv(X; W) can be written as Cvec(X) where C is the convolution
matrix induced by W. Thus we can write the lipschitz convolution residual layer in a similar structure as in
the fully-connected layer

hz) = /yHvec(x) + Go(Wwec(x) + b)
1T GT CA . . .
where W = —/yA~"G" H and gr| = Cayley( c ), C4 and Cpg are convolution matrix induced by W4
B
and Wp. By theorem 4.3, we have

G = Fpyy yodiag (G s GTo) Fo

cout,n?

HT = F* diag(H1T7 e I‘Iz;z)]:cout,n2

cout,n?

where ] = Cayley(D;), and the operations Hvec(z), Guec(z), GT Hvec(x) can be efficiently computed

T
(3
i
with FFT, permutation and batch matrix multiplication as in [1]



References

[1] Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform. arXiv
preprint arXiw:2104.07167, 2021.



