
A Tour through Policy Gradient Method and Its Variants

Jiarui Wang

November 3, 2023

Policy Gradient and its variants have been the state-of-the-art methods to train reinforce-
ment learning models. Although there have been many online materials talking about the
policy gradient, they only include the final update rule or over-simplified derivation of the
policy gradient. In this note, I want to make a self-contained tutorial to go through the devel-
opment of policy-gradient methods and their theoretical basis (but it requires basic knowledge
in reinforcement learning like value function and Q function), making the knowledge graph
about policy gradient into a knowledge "linked list" so that you can follow the material sequen-
tially. Hopefully, this note can be good material for those who (and, of course, myself) want
to systematically study policy gradient methods and a good supplementary material for David
Silver’s RL course and CS294-112.

Contents

1 Notations and Problem Setup 2

2 Policy Gradient Theorem 2

3 Reducing Variance with A Baseline 5

4 Actor-Critic with TD Learning 6

5 Monotonic Improvement Theorem 7
5.1 Monotonic Improvement Theorem Derivation 7
5.2 Monotonic Improvement Theorem: In a Nutshell 10

6 Natural Policy Gradient 11
6.1 Intuition for Trust Region: Natural Gradient Descent 11
6.2 Natural Policy Gradient . 12

7 Trust Region Policy Optimization 14

8 Proximal Policy Optimization 14
8.1 Adaptive KL Penalty Coefficient . 15
8.2 Clipped Surrogate Objective . 15

9 Generalized Advantage Estimation 16

1

1 Notations and Problem Setup

In this note, we’ll consider the scenario that the initial state follows a certain distribution ρs0 ,
and we want to maximize the expected accumulative reward from the starting state.

• a: Action

• s: State

• γ: Discount factor

• π: Policy

• P a
ss′ : The transition probability from s to s′ by taking action a.

• ρso : The distribution of starting state

• V π(s): The expected (discounted) total reward starting from s by following π

• η(π) = Eπ[
∑∞

t=0 γ
trt]: The expected (discounted) total reward

• Qπ(s, a): The expected (discounted) total reward starting from s by taking action a and
then following π

• P (st = s|π): The probability of ending up in s′ at time t starting from s by following π

• ρπ(s) =
∑∞

t=0 γ
tP (st = s|π): The (unnormalized) discounted visitation frequency

• τ = {s0, a0, s1, a1, ...} is a full trajectory

The unlisted notation will be made clear when it’s used.

2 Policy Gradient Theorem

The policy gradient theorem was first introduced by [1]. In that paper, the author considered
two cases: The first case is when we want to maximize the average per-step reward. The
second case is when the initial state s0 is fixed or follows a certain distribution, and we want
to maximize the long-term total reward. We’ll only consider the second case for simplicity. In
this case, the objective of maximizing total reward becomes maxθ V

πθ(s0) We first give the
derivation of the policy gradient and then go through it.

2

∂

∂θ
V πθ(s0) =

∂

∂θ

∑
a

πθ(a|s0)Qπθ(s0, a) (2.1)

=
∑
a

Qπθ(s0, a)
∂

∂θ
πθ(a|s0) +

∑
a

πθ(a|s0)
∂

∂θ
Qπθ(s0, a) (2.2)

=
∑
s

∑
a

0∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

+
∑
a

πθ(a|s0)
∂

∂θ
Qπθ(s0, a) (2.3)

=
∑
s

∑
a

0∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

+
∑
a

πθ(a|s0)γ
∑
s′

P a
ss′

∂

∂θ
V πθ(s′) (2.4)

=
∑
s

∑
a

0∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

+ γ
∑
s

P (s1 = s|s0, πθ)
∂

∂θ
V πθ(s) (2.5)

=
∑
s

∑
a

0∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

+ γ
∑
s

P (s1 = s|s0, πθ)
(∑

a

Qπθ(s, a)
∂

∂θ
πθ(a|s) +

∑
a

πθ(a|s)
∂

∂θ
Qπθ(s, a)

)
(2.6)

=
∑
s

∑
a

0∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

+ γ
∑
s

P (s1 = s|s0, πθ)
∑
a

Qπθ(s, a)
∂

∂θ
πθ(a|s)

+ γ
∑
s

P (s1 = s|s0, πθ)
∑
a

πθ(a|s)
∂

∂θ
Qπθ(s, a) (2.7)

=
∑
s

∑
a

1∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

+ γ
∑
s

P (s1 = s|s0, πθ)
∑
a

πθ(a|s)γ
∑
s′

P a
ss′

∂

∂θ
V πθ(s′) (2.8)

=
∑
s

∑
a

1∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

+ γ2
∑
s

P (s2 = s|s0, πθ)
∂

∂θ
V πθ(s) (2.9)

=

=
∑
s

∑
a

∞∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s) (2.10)

3

The reasoning for the derivation is as follows:

(2.1) : Plug in the definition of V πθ(s0)

(2.2) : Derivative of the product

(2.3) : Rewrite the first term trivially. Note for each s, it’s non-zero only when s = s0, t = 0

(2.4) : Use the definition Q(s, a) = r(s, a)+ γ
∑′

s P
a
ss′V (s′). Note r(s, a) does not depend on θ

(2.5) : Reinterpret the probability chain of the second term in (2.4). Note that s in (2.5) is
the s′ in (2.4).

(2.6) : Plug in the definition of V

(2.7) : Separate the second term of (2.6)

(2.8) : Merge the first two terms of (2.7) and use the definition Q(s, a) = r(s, a)+γ
∑′

s P
a
ss′V (s′)

(2.9) : Reinterpret the probability chain of the second term in (2.8). Note that s in (2.9) is
the s′ in (2.8)

(2.10) : Note the recursive relationship shown in (2.5) and (2.9). We unroll (2.10) infinitely.

Now we can compute the gradient of V πθ as follows by taking the expectation

∂

∂θ
η(πθ) =

∑
s0

ρ0(s0)
∂

∂θ
V πθ(s0)

=
∑
s0

ρ0(s0)
∑
s

∑
a

∞∑
t=0

γtP (st = s|s0, πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

=
∑
s

∑
a

∞∑
t=0

γtP (st = s|πθ)Qπθ(s, a)
∂

∂θ
πθ(a|s)

=
∑
s

ρπθ
(s)

∑
a

πθ(a|s)
1

πθ(a|s)
Qπθ(s, a)

∂

∂θ
πθ(a|s)

= Es∼ρπθ ,a∼πθ(s)

[
Qπθ(s, a)

∂

∂θ
log πθ(a|s)

]
(2.11)

(2.11) says that we can estimate ∂
∂θV

πθ by sampling from ρπθ
. But ρπθ

is hard to sample
from since it’s a discounted (unnormalized) distribution. However, we can rewrite (2.11) as

∂

∂θ
η(πθ) = Eτ∼πθ

[∞∑
t=0

γtQπθ(st, at)
∂

∂θ
log πθ(at|st)

]
(2.12)

since

4

Eτ∼πθ

[∞∑
t=0

γtQπθ(st, at)
∂

∂θ
log πθ(at|st)

]
=

∞∑
t=0

γtEτ∼πθ

[
Qπθ(st, at)

∂

∂θ
log πθ(at|st)

]
=

∞∑
t=0

γt
∑
s

P (st = s|πθ)Ea∼πθ(s)

[
Qπθ(s, a)

∂

∂θ
log πθ(a|s)

]
=Es∼ρπθ ,a∼πθ(s)

[
Qπθ(s, a)

∂

∂θ
log πθ(a|s)

]
However, in practice, people usually approximate (2.12) with

∂

∂θ
η(πθ) ≈ Eτ∼πθ

[
Qπθ(st, at)

∂

∂θ
log πθ(at|st)

]
(2.13)

This works fine in practice. But I’m not sure why this is a valid approximation. One
intuition might be we optimize the gain from not only the starting state but from every state.

3 Reducing Variance with A Baseline

Most content of the section is derived from [2]
(2.13) directly suggests an algorithm as follows called REINFORCE

Algorithm 1 REINFORCE
Initialize πθ
while not converge do

Sample episode s0, a0, r0, ...sT ∼ πθ
Compute Gt =

∑T
τ=t γ

τ−trτ
for t=1,...,T-1 do

θ := θ + αGt∇θ log πθ(at|st)
end for

end while

This seems to be a reasonable gradient ascent method, but it does not always work in
practice since Gt is high-variance even though it’s an unbiased estimator of V πθ(st). One way
is to subtract a baseline B(s) form Q(s, a). It’s fine if this is not clear for now, let’s see how it
works.

For any function B(s) (not that B(s) depends only on s, not on a), we have

Es∼ρπθ ,a∼πθ

[
∇θ log πθ(a|s)B(s)

]
=

∑
s

ρπθ
(s)

∑
a

∇θπθ(a|s)B(s)

=
∑
s

ρπθ
(s)B(s)∇θ

∑
a

πθ(a|s)

=
∑
s

ρπθ
(s)B(s)∇θ1

= 0

5

thus we can write

Es∼ρπθ ,a∼πθ(s)

[
Qπθ(s, a)∇θ log πθ(a|s)

]
= Es∼ρπθ ,a∼πθ(s)

[(
Qπθ(s, a)−B(s)

)
∇θ log πθ(a|s)

]
The intuition is as follows: B(s) how good is state s over all actions. And we define the

advantage function Aπθ(s, a) = Qπθ(s, a) − B(s) is how much more "goodness" we can get at
s by taking a.

One good choice for the baseline function is B(s) = V πθ(s), then we have the policy gradient

∂

∂θ
η(πθ) = Es∼ρπθ ,a∼πθ(s)

[
Qπθ(s, a)

∂

∂θ
log πθ(a|s)

]
= Es∼ρπθ ,a∼πθ(s)

[∂

∂θ
log πθ(a|s)

(
Qπθ(s, a)− V πθ(s)

)]
= Es∼ρπθ ,a∼πθ(s)

[∂

∂θ
log πθ(a|s)

(
r(s, a) + γV πθ(s′)− V πθ(s)

)]
(3.1)

We can see in (3.1), the advantage function is exactly the form of TD error. V πθ(s) is how
good s is, and r(s, a) + γV πθ(s′)− V πθ(s) is how much better we get by taking action a at s.
If r(s, a) + γV πθ(s′)− V πθ(s) is large, it means taking action a at s gives us much juice, thus
we increase log πθ(a|s) by the amount of juice.

As in (2.13), people usually sample trajectories instead of ρπθ
in practice, and it works well.

4 Actor-Critic with TD Learning

One problem in (3.1) is that we don’t have V πθ . One way to solve this problem is to we
approximate V πθ using an approximator, and like in generalized policy gradient, we switch
between estimating the value function and improving the policy. This paradigm suggests an
algorithm called Actor-Critic, where we have an policy called "actor" and a value function
approximation called "critic" at the same time.

The actor-critic algorithm is as follow

Algorithm 2 TD Actor Critic
Initialize actor πθ
Initialize critic Vw

while not converge do
Sample a batch of (s, a, r, s′) tuple from πθ
Compute TD target y(s) = r(s) + Vw(s

′).detach() // no gradient though the target
Compute the TD error δ(s) = y(s)− Vw(s) // gradient passes through y(s)
Compute critic loss closs = ∥δ∥22
Compute actor loss aloss = −

∑
s∇θ log πθ(a|s) ∗ δ(s).detach() // no gradient through

the advantage function
Take a gradient step to minimize aloss+ closs

end while

One thing to mention is that, similar to Q-learning, I think we should fix the TD target
(that’s why Vw(s

′) is detached or even has a pair of neural nets approximating the V function

6

that switches over and over as in DQN. However, it works just fine even if we don’t detach
anything and let the gradient flows through all paths.

5 Monotonic Improvement Theorem

If you’re not interested in the detailed derivation, you can go through Lemma 1 and jump to
section 6.2. You’ll be good.

5.1 Monotonic Improvement Theorem Derivation

Most content of the section is derived from [3], but re-organized. Some of the derivations/def-
initions are not exactly the same as in the paper, those are based on my understanding. You
can find the lemma/definition/theorem by the same index number in the paper.

Lemma 1 Given 2 policies π, π̃, let Ā(s;π, π̃) = Ea∼π̃(s)[A
π(s, a)], we have

η(π̃) = η(π) + Eτ∼π̃

[∞∑
t=0

γtAπ(st, at)
]

= η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a)

= η(π) + Eτ∼π̃

[∞∑
t=0

γtĀ(st;π, π̃)
]

proof:

Eτ∼π̃

[∞∑
t=0

γtAπ(st, at)
]
= Eτ∼π̃

[∞∑
t=0

γt
(
r(st, at) + γV π(st+1)− V π(st)

)]
= Eτ∼π̃

[∞∑
t=0

γtr(st, at)
]
− Eτ∼π̃

[
V π(s0)

]
= η(π̃)− η(π)

Eτ∼π̃

[∞∑
t=0

γtAπ(st, at)
]
=

∞∑
t=0

γtEτ∼π̃

[
Aπ(st, at)

]
=

∞∑
t=0

γt
∑
s

P (st = s|π̃)
∑
a

π̃(a|s)Aπ(s, a)

=
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a)

Definition 1 (π, π̃) is an α−coupled policy pair if exists a joint distribution (A, Ã)|S such that

• P (A ̸= Ã|s) ≤ α ∀ s

• Marginal of A is π(s) ∀ s

7

• Marginal of Ã is π̃(s) ∀ s

If you’re not familiar with coupling, [4] is a good material for background knowledge.

Lemma 2 Let (π, π̃) be an α-coupled policy pair, then

|Ā(s;π, π̃)| ≤ 2αmax
s,a

|Aπ(s, a)|

proof:

Ā(s;π, π̃) = Eã∼π̃(s)

[
Aπ(s, ã)

]
= E(a,ã)∼(π(s),π̃(s))

[
Aπ(s, ã)−Aπ(s, a)

]
= P (a ̸= ã|s)E(a,ã)∼(π(s),π̃(s))|a̸=ã

[
Aπ(s, ã)−Aπ(s, a)

]
|Ā(s;π, π̃)| ≤ 2αmax

s,a
|Aπ(s, a)|

8

Lemma 3 Let (π, π̃) be an coupled policy pair, then∣∣∣∣Est∼π̃

[
Ã(st;π, π̃)

]
− Est∼π

[
Ã(st;π, π̃)

]∣∣∣∣ ≤ 2αmax
s

Ā(st;π, π̃) ≤ 4α
(
1− (1− α)t

)
max
s,a

|Aπ(s, a)|

proof:
1 Consider we sample τ ∼ π, τ̃ ∼ π̃, let nt =

∑t−1
i=1 1{ai ̸= ãi}. Since P (at = ãt|st) ≥ 1− α,

we have P (nt = 0) ≥ (1− α)t, P (nt > 0) ≤ 1− (1− α)t{
Est∼π̃[Ã(st;π, π̃)] = P (nt = 0)Est∼π̃|nt=0[Ā(st;π, π̃)] + P (nt > 0)Est∼π̃|nt>0[Ā(st;π, π̃)]

Est∼π[Ã(st;π, π̃)] = P (nt = 0)Est∼π|nt=0[Ā(st;π, π̃)] + P (nt > 0)Est∼π|nt>0[Ā(st;π, π̃)]

Note that P (nt = 0)Est∼π̃|nt=0[Ā(st;π, π̃)] = P (nt = 0)Est∼π|nt=0[Ā(st;π, π̃)]. Subtracting
two equations and taking the absolute value we have∣∣∣∣Est∼π̃[Ã(st;π, π̃)]− Est∼π[Ã(st;π, π̃)]

∣∣∣∣
=P (nt > 0)

∣∣∣∣Est∼π̃|nt>0[Ā(st;π, π̃)− Est∼π|nt>0[Ā(st;π, π̃)

∣∣∣∣
≤
(
1− (1− α)t

)
2max

s

∣∣Ā(st;π, π̃)∣∣
≤4α

(
1− (1− α)t

)
max
s,a

∣∣Aπ(s, a)
∣∣

In the final step, we use the result of Lemma 2.

Theorem 1 Let L(π̃;π) = η(π)+
∑

s ρπ(s)
∑

a π̃(a|s)Aπ(s, a) and η(π̃) = η(π)+
∑

s ρπ̃(s)
∑

a π̃(a|s)Aπ(s, a)
(by lemma 1), we have

η(π̃) ≥ L(π̃;π)− 4γ

(1− γ)2
max
s,a

∣∣Aπ(s, a)
∣∣Dmax

TV (π, π̃)2

≥ L(π̃;π)− 4γ

(1− γ)2
max
s,a

∣∣Aπ(s, a)
∣∣Dmax

KL (π, π̃)2

proof :
Let α = Dmax

TV (π, π̃), then ∀ s, α ≥ DTV (π(s), π̃(s)) = inf(A,Ã) P (A ̸= Ã|s) where the inf is
taken over all (A, Ã) that is a coupling of (π(s), π̃(s)). Thus (π, π̃) is an α-coupled policy pair.

η(π̃)− L(π̃, π) =
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a)−
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a)

= Eτ∼π̃

[∞∑
t=0

γtĀ(st;π, π̃)

]
− Eτ∼π

[∞∑
t=0

γtĀ(st;π, π̃)

]

=
∞∑
t=0

γt
(
Eτ∼π̃

[
Ā(st;π, π̃)

]
− Eτ∼π

[
Ā(st;π, π̃)

])

1I don’t really trust this step. α-couple policy pair gives P (A ̸= Ã|s) ≤ α, which says two policies agrees with
high probability given s, which says P (nt > 0|s1, ..., st−1) ≤ 1− (1− α)t. Note here it should be a conditional
probability (in my opinion).

9

∣∣∣∣η(π̃)− L(π̃, π)

∣∣∣∣ ≤ ∞∑
t=0

γt
∣∣∣∣Eτ∼π̃

[
Ā(st;π, π̃)

]
− Eτ∼π

[
Ā(st;π, π̃)

]∣∣∣∣
≤

∞∑
t=0

γt4α
(
1− (1− α)t

)
max
s,a

∣∣Aπ(s, a)
∣∣

=

[
1

1− γ
− 1

1− γ(1− α)

]
4αmax

s,a

∣∣Aπ(s, a)
∣∣

≤ 4α2γ

(1− γ)2
max
s,a

∣∣Aπ(s, a)
∣∣

=
4γ

(1− γ)2
max
s,a

∣∣Aπ(s, a)
∣∣Dmax

TV (π, π̃)2

≤ 4γ

(1− γ)2
max
s,a

∣∣Aπ(s, a)
∣∣Dmax

KL (π, π̃)

In the last step, we use Pinsker’s inequality DTV (P,Q) ≤
√

1
2DKL(P,Q).

5.2 Monotonic Improvement Theorem: In a Nutshell

Let L(π̃;π) = η(π)+
∑

s ρπ(s)
∑

a π̃(a|s)Aπ(s, a) and η(π̃) = η(π)+
∑

s ρπ̃(s)
∑

a π̃(a|s)Aπ(s, a).
Suppose we are training a reinforcement learning agent and we have policy π (π might not be
a good policy) at some iteration, we are interested in finding a next policy π̃ that maximizes
η(π̃). However, it is hard to optimize η(π̃) since it depends on ρπ̃, a visitation distribution of
an unknown policy.

Theorem 1 bounded the difference between η(π̃) and L(π̃;π) by Dmax
KL (π, π̃), which says

L(π̃;π) is a good approximation of η(π̃) when two policies π and π̃ are similar to each other.
Thus we can instead optimize L(π̃;π) while keeping Dmax

KL (π, π̃) small. Thus we transform the
policy optimization as follows

max
π̃

. η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a)

↓ by Theorem 1

max
π̃

. L(π̃;π) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a)

s.t. Dmax
KL (π, π̃) ≤ δ

↓ Importance Sampling

max
π̃

.
∑
s

ρπ(s)
∑
a

π(a|s) π̃(a|s)
π(a|s)

Aπ(s, a)

s.t. Dmax
KL (π, π̃) ≤ δ

↓ Approximation

10

max
π̃

. L(π̃;π) = Es∼ρπ ,a∼π

[
π̃(a|s)
π(a|s)

Aπ(s, a)

]
(5.1)

s.t. Es∼ρπ

[
DKL(π(s), π̃(s))

]
≤ δ

The main takeaway is that we finally get the optimization problem (5.1). Here we define

L(π̃;π) = Es∼ρπ ,a∼π

[
π̃(a|s)
π(a|s)A

π(s, a)

]
for later use.

6 Natural Policy Gradient

Lots of content in the remaining sections is derived from [5].

6.1 Intuition for Trust Region: Natural Gradient Descent

Before we dive again into algorithms, let’s see natural gradient descent which will give us a
good intuition about Natural Policy Gradient.

As you may know, one thing in gradient descent is that we should not use too large a step
size which may lead to divergence. However, in policy gradient, even if we take a small step
size to θ′ close to θ in the parameter space, πθ′ is not necessarily πθ in the policy space. If at
one iteration, we perform a gradient step and reach a bad policy, it may be hard to recover
from the bad policy since the gradient step uses the samples collected from the bad policy.

One way to deal with this problem is to keep πθ′ and πθ close explicitly. And we demonstrate
this idea with natural gradient descent.

Suppose we have a distribution Pθ(X) parameterized by θ ∈ Rn. For example, θ can be
the mean and covariance of a multivariate Gaussian. Suppose we now want to minimize some
loss function L(θ) with respect to θ. For example, L(θ) can be the negative likelihood of some
data under Pθ. Then we can write the optimization problem as

min
θ

L(θ)

For non-convex problems, we typically want to update the parameters θ in a “smooth” way,
which means we do not want to change the model too drastically (the model is Pθ(·) in this
case). One way is to constrain the difference between the model before and after each step
(for example, before and after each gradient step). To this end, we can solve the following
constrained optimization at each step

min
θ′

L(θ′) (6.1.1)

s.t. KL
(
Pθ∥Pθ′

)
≤ δ

Here, θ is the current value of parameter, KL(P∥Q) =
∫
p(x) log p(x)

q(x)dx is the KL-divergence,
and p, q denote the probability densities of P,Q. At each step, we solve (1), which means we
want to minimize L(θ′) while making Pθ′ stay close to Pθ. We call this a trust region method.

We first approximate the KL divergence using a second-order Taylor expansion

11

KL
(
Pθ∥Pθ′

)
≈ KL

(
Pθ∥Pθ

)
+∇θ′KL

(
Pθ∥Pθ′

)∣∣T
θ′=θ

(θ′ − θ) +
1

2
(θ′ − θ)T∇2

θ′KL
(
Pθ∥Pθ′

)∣∣
θ′=θ

(θ′ − θ)

KL
(
Pθ∥Pθ

)
= 0. KL

(
Pθ∥Pθ′

)
= 0 when θ′ = θ, thus θ′ is the local/global minimum of

KL
(
Pθ∥Pθ′

)
, so the gradient ∇θ′KL

(
Pθ∥Pθ′

)∣∣
θ′=θ

= 0. Thus the first 2 terms are both 0,
KL

(
Pθ∥Pθ′

)
≈ 1

2(θ
′ − θ)TH(θ′ − θ)

To approximately solve the optimization problem (4.1), we apply first-order approximation
to the objective function L(θ′) ≈ L(θ)+∇L(θ)T (θ′−θ), and second-order approximation to the
constraint KL

(
Pθ∥Pθ′

)
≈ 1

2(θ
′ − θ)T∇2

θ′KL
(
Pθ∥Pθ′

)∣∣
θ′=θ

(θ′ − θ), then we get the optimization
problem

min
θ′

. gT (θ′ − θ) (6.1.2)

s.t.
1

2
(θ′ − θ)TH(θ′ − θ) ≤ δ

where g = ∇θ′L(θ
′)
∣∣
θ′=θ

, H = ∇2
θ′KL

(
Pθ∥Pθ′

)∣∣
θ′=θ

. We can derive a closed-form solution to

(4.2) θ′∗ = θ +−
√
2δH−1g√
gTH−1g

with a change of variable.

H = ∇2
θ′KL

(
Pθ∥Pθ′

)∣∣
θ′=θ

can be computed as

H = ∇2
θ′KL

(
Pθ∥Pθ′

)∣∣∣∣
θ′=θ

= ∇2
θ′

∫
Pθ(x) log

Pθ(x)

Pθ′(x)
dx

= −Ex∼Pθ

[
∇2

θ′ logPθ′(x)
]∣∣∣∣

θ′=θ

= −Ex∼Pθ

[
∇θ′

∇θPθ′(x)

Pθ(x)

]∣∣∣∣
θ′=θ

= −Ex∼Pθ

[
Pθ(x)∇2

θPθ′(x)−∇θ′Pθ′(x)∇θ′Pθ′(x)
T

Pθ(x)2

]∣∣∣∣
θ′=θ

= −∇2
θ

∫
Pθ′(x)dx+ Ex∼Pθ

[
∇θ′ logPθ′(x)∇θ′ logPθ′(x)

T

]∣∣∣∣
θ′=θ

= Ex∼Pθ

[
∇θ′ logPθ′(x)∇θ′ logPθ′(x)

T

]∣∣∣∣
θ′=θ

(6.1.3)

6.2 Natural Policy Gradient

If you can understand natural gradient descent, then Natural Policy Gradient is just an appli-
cation. Similar to (5.1), we have the optimization problem

max
θ′

. L(θ′; θ) = Es∼ρπθ ,a∼πθ

[
πθ′(a|s)
πθ(a|s)

Aπθ(s, a)

]
(6.2.1)

s.t. Es∼ρπθ

[
DKL(π(s), πθ′(s))

]
≤ δ

12

Note here that θ′ is the variable we optimize over, and θ is the parameter of the old policy.
We first compute the gradient

∇θ′L(θ′; θ)
∣∣
θ′=θ

= ∇θ′Es∼ρπθ ,a∼πθ

[
πθ′(a|s)
πθ(a|s)

Aπθ(s, a)

]∣∣∣∣
θ′=θ

= Es∼ρπθ ,a∼πθ

[∇θ′πθ′(a|s)
∣∣
θ′=θ

πθ(a|s)
Aπθ(s, a)

]
= Es∼ρπθ ,a∼πθ

[
∇θ′ log πθ′(a|s)

∣∣
θ′=θ

Aπθ(s, a)

]
(6.2.2)

Note that (7.2) is exactly the policy gradient, same as (3.1). And similar to (6.1.3), the hessian
∇2

θ′Es∼ρπθ

[
DKL(π(s), πθ′(s))

]
can be estimated as Es∼ρπθ ,a∼πθ

[
∇θ′ log πθ′(a|s)∇θ′ log πθ′(a|s)T

]
The relationship between policy gradient and Natural Policy Gradient is shown in Figure

1. NPG is trying to go as far as possible in PG direction while staying in the trust region.
The same interpretations also carry to Natural Gradient Descent. Note H−1g is very similar
to the newton direction, the only difference is that in Newton’s direction, H is the hessian of
the objective (i.e. derivative of g), or putting it in another way, the trust region is measured
by the local-hessian norm.

Figure 1: Policy Gradient and Natural Policy Gradient

Let’s outline the Natural Policy Gradient in algorithm 3 to conclude this section.

13

Algorithm 3 Natural Policy Gradient
Initialize actor πθ
while not converge do

Sample a batch of (s, a, r, s′) tuple from πθ

Compute g = Es∼ρπθ ,a∼πθ

[
∇θ′ log πθ′(a|s)

∣∣
θ′=θ

Aπθ(s, a)

]
Compute H = Es∼ρπθ ,a∼πθ

[
∇θ′ log πθ′(a|s)∇θ′ log πθ′(a|s)T

]
Update θ′ = θ +

√
2δH−1g√
gTH−1g

end while

7 Trust Region Policy Optimization

In Natural Policy Optimization, we try to go in the direction of policy gradient while staying
in the trust region. But note that the constraint in (6.2.1) is approximated by the second-order
Taylor expansion. It may be the case that the natural policy gradient can bring us out of the
trust region (the constraint in (6.2.1)). To solve this problem, Appendix C of [3] proposed
using line search to ensure we "improve the nonlinear objective while satisfying the nonlinear
constraint". The TRPO algorithm is outlined in

Algorithm 4 Trust Region Policy Optimization
Initialize actor πθ
while not converge do

Sample a batch of (s, a, r, s′) tuple from πθ

Compute g = Es∼ρπθ ,a∼πθ

[
∇θ′ log πθ′(a|s)

∣∣
θ′=θ

Aπθ(s, a)

]
Compute H = Es∼ρπθ ,a∼πθ

[
∇θ′ log πθ′(a|s)∇θ′ log πθ′(a|s)T

]
Compute NPG direction ∆θ =

√
2δH−1g√
gTH−1g

for j=1,...,L do
Compute proposed update θ̃ = θ + βj∆θ
if L(θ̃; θ) > 0 and DKL(πθ̃, πθ) < δ then

accept the update θ := θ + βj∆θ
end if

end for
end while

Despite its huge impact on the further development of reinforcement learning, TRPO is
nothing but Natural Policy Gradient plus backtracking line search which is widely used in
optimization algorithms. Once you understand NPG, TRPO is very simple.

8 Proximal Policy Optimization

In both NPG and TRPO, we need to compute H−1g, which can be efficiently solved with the
conjugate gradient method (if you’re not familiar with conjugate gradient, [6] is a good tutorial).

14

However, solving linear systems is still very expensive. In [7], two methods to approximately
solve (6.2.1) are proposed.

8.1 Adaptive KL Penalty Coefficient

One variant of PPO is the Adaptive KL Penalty Coefficient, outlined in algorithm 5.

Algorithm 5 PPO: Adaptive KL Penalty Coefficient
Initialize actor πθ
while not converge do

Sample a batch of (s, a, r, s′) tuple from πθ

Take a gradient step to maximize Es∼ρπθ ,a∼πθ

[
πθ′ (a|s)
πθ(a|s) Â(s, a)− βDKL

(
πθ(s), πθ′(s)

)]
for Every k steps do

Compute d = Es∼ρπθ ,a∼πθ

[
DKL

(
πθ(s), πθ′(s)

)]
if thend < δ/1.5

β = β/2
else if thend > δ ∗ 1.5

β = β ∗ 2
end if

end for
end while

This algorithm maximizes L(θ′; θ) by penalizing the KL divergence, occasionally checks
the violence of the KL divergence constraint, and increases the penalizing weight if the KL
constraint is violated significantly or decreases the penalizing weight if the KL constraint is
satisfied by a large gap.

This type of algorithm can be seen as an approximation of the dual gradient method (if
you’re not familiar with this, [8] is a good resource, the "price update" is a wonderful interpre-
tation).

8.2 Clipped Surrogate Objective

Another variant of PPO maximizes the following objective

Es∼ρπθ ,a∼πθ

[
min

(
πθ′(a|s)
πθ(a|s)

Â(s, a),Clip
(πθ′(a|s)
πθ(a|s)

, 1− ϵ, 1 + ϵ
)
Â(s, a)

)]

Intuitively, in this algorithm, even if we change the policy drastically, the change is com-
promised by Clip(·, 1− ϵ, 1 + ϵ).

Consider this case: Â(s, a) is large, we can make πθ′(a|s) very large to maximize the objec-
tive. However, if πθ′(a|s) is very large, πθ′ (a|s)

πθ(a|s) Â(s, a) > Clip
(πθ′ (a|s)
πθ(a|s) , 1−ϵ, 1+ϵ

)
Â(s, a), the first

term is ignored, thus the gradient flow through the first term is cut down. Also, πθ′ (a|s)
πθ(a|s) > 1+ ϵ,

thus the clip function takes the value 1+ ϵ, the gradient flow through πθ′(a|s) is cut down. So
when πθ′(a|s) exceeds (1 + ϵ)πθ(a|s) to achieve a good objective, the gradient flow is cut down
and it’s not updated (for this (s, a) pair) anymore.

15

9 Generalized Advantage Estimation

In [7], they used generalized advantage estimation, which is, similar to λ-return, an important
technique to balance the bias-variance trade-off in TD learning. The generalized advantage
estimation Â(s, a) is computed as

Â(1)(s0, a0) = r(s0, a0) + γV̂ (s1, a1)− V̂ (s0)

Â(2)(s0, a0) = r(s0, a0) + γr(s1, a1) + γ2V̂ (s2)− V̂ (s0)

...

Â(s0, a0) = (1− λ)
(
Â(1)(s0, a0) + λÂ(2)(s0, a0) + λ2Â(3)(s0, a0) + ...

)
= (1− λ)λ0

(
r(s0, a0) + γV̂ (s1)− V̂ (s0)

)
+ (1− λ)λ1

(
r(s0, a0) + γr(s1, a1) + γ2V̂ (s2)− V̂ (s0)

)
+ (1− λ)λ1

(
r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + γ3V̂ (s3)− V̂ (s0)

)
...

= −V̂ (s0)

+ (1− λ)λ0
(
r(s0, a0) + γV̂ (s1)

)
+ (1− λ)λ1

(
r(s0, a0) + γr(s1, a1) + γ2V̂ (s2)

)
+ (1− λ)λ2

(
r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + γ3V̂ (s3)

)
... group the term in same color

= −V̂ (s0)

+ (γλ)0
(
r(s0, a0) + γ(1− λ)V̂ (s1)

)
+ (γλ)1

(
r(s1, a1) + γ(1− λ)V̂ (s2)

)
+ (γλ)2

(
r(s2, a2) + γ(1− λ)V̂ (s3)

)
...

= −V̂ (s0)

+ (γλ)0
(
r(s0, a0) + γV̂ (s1)− γλV̂ (s1)

)
+ (γλ)1

(
r(s1, a1) + γV̂ (s2)− γλV̂ (s2)

)
+ (γλ)2

(
r(s2, a2) + γV̂ (s3)− γλV̂ (s3)

)
... shift red terms down by 1

= (γλ)0
(
r(s0, a0) + γV̂ (s1)− V̂ (s0)

)
+ (γλ)1

(
r(s1, a1) + γV̂ (s2)− V̂ (s1)

)
+ (γλ)2

(
r(s2, a2) + γV̂ (s3)− V̂ (s2)

)
...

= (γλ)0δ0 + (γλ)1δ1 + (γλ)2δ2 + ...

16

王嘉瑞

王嘉瑞

王嘉瑞

王嘉瑞

王嘉瑞

王嘉瑞

王嘉瑞

王嘉瑞

王嘉瑞

王嘉瑞

References

[1] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. Advances in neural
information processing systems, 12, 1999.

[2] David Silver. Reinforcement learning, ucl. https://www.youtube.com/watch?v=
mpbWQbkl8_g.

[3] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–
1897. PMLR, 2015.

[4] Total variation and coupling. https://jerryzli.github.io/robust-ml-fall19/lec2.
pdf.

[5] Cs294-112, uc berkeley. https://www.youtube.com/watch?v=ycCtmp4hcUs&list=PLkFD6_
40KJIznC9CDbVTjAF2oyt8_VAe3&index=14, 10 2017.

[6] conjugate gradeint method. http://lovinglavigne.com/ConjugateGradient/cg.pdf,
2021.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[8] Ee364b, lec 4. https://www.youtube.com/watch?v=kE3wtUaQzpA&list=
PL7DD2F5ED3D1A1514&index=4, 2021.

17

https://www.youtube.com/watch?v=mpbWQbkl8_g
https://www.youtube.com/watch?v=mpbWQbkl8_g
https://jerryzli.github.io/robust-ml-fall19/lec2.pdf
https://jerryzli.github.io/robust-ml-fall19/lec2.pdf
https://www.youtube.com/watch?v=ycCtmp4hcUs&list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3&index=14
https://www.youtube.com/watch?v=ycCtmp4hcUs&list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3&index=14
http://lovinglavigne.com/ConjugateGradient/cg.pdf
https://www.youtube.com/watch?v=kE3wtUaQzpA&list=PL7DD2F5ED3D1A1514&index=4
https://www.youtube.com/watch?v=kE3wtUaQzpA&list=PL7DD2F5ED3D1A1514&index=4

	Notations and Problem Setup
	Policy Gradient Theorem
	Reducing Variance with A Baseline
	Actor-Critic with TD Learning
	Monotonic Improvement Theorem
	Monotonic Improvement Theorem Derivation
	Monotonic Improvement Theorem: In a Nutshell

	Natural Policy Gradient
	Intuition for Trust Region: Natural Gradient Descent
	Natural Policy Gradient

	Trust Region Policy Optimization
	Proximal Policy Optimization
	Adaptive KL Penalty Coefficient
	Clipped Surrogate Objective

	Generalized Advantage Estimation

