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In this note, I want to make a review on multivariate Gaussian Distribution, including the
conditional distribution, marginal distribution, covariance matrix and information matrix of mul-
tivariate Gaussian distribution. There is nothing fancy in this note and some proof in this note
is not the simplest way to make proofs, it basicly list some important fact of Gaussian distribu-
tion and the proof. However, I hope it can provide you a new perspective to think of Gaussian
distribution. Hopefully, this can be a good complementary material for Chapter 7 of the book
Probabilistic Graphical Models: Principles and Techniques by Daphne Koller.
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1 Univariate Gaussian Distribution
The Gaussian distribution N (µ, σ2) is defined by

pX(x) =
1√
2πσ2

exp(−1

2

(x− µ)2

σ2
) (1.1)

I assume you are familiar with these bell-shaped curves, but for the sake of completeness, let
me show you those curves with µ = 0.

Figure 1: 1d Gaussian distribution with µ = 0 and σ2 = 1

The first thing I want to show is how to integrate this function. There’s no close-form
solution for the CDF of a Gaussian distribution, but we can still integrate over the whole real
line. The trick is, the same as what we used in the note of Conjugate Gradient method, change
of coordinate. Let’s integrate a standard normal N (0, 1).∫ ∞

−∞
e−

x2

2 dx

∫ ∞

−∞
e−

y2

2 dy (1.2)

=

∫ ∞

−∞

∫ ∞

−∞
e−

x2

2 e−
y2

2 dydx

=

∫ ∞

−∞

∫ ∞

−∞
e−

1
2
(x2+y2)dydx (1.3)

Now make a change of coordinate from cartesian coordinate to polar coordinate, then (1.3)
becomes ∫ 2π

0

∫ ∞

0
e−

1
2
r2rdrdθ let x = r2

2
(1.4)

=

∫ 2π

0

∫ ∞

0
e−xdxdr

=2π

Thus
∫∞
−∞ e−

x2

2 dx = 2π and the standard normal integrates to 1.
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2 Multivariate Gaussian Distribution
The multivariate Gaussian distribution N (µ,Σ) is defined as

pX(x) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)) (2.1)

where µ is the expectation, Σ is a positive definite covariance matrix and n is the dimension of
random variable X.

2d Gaussian distributions with µ = 0 and different Σ are shown in figure 2
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Figure 2: 2D Gaussian distributions with µ = 0 and different Σ

In the case of n = 2, when the covariance matrix is the identity matrix, it’s obvious the
contour lines of pX(x) are a group of concentric circles, and when we integrate over the whole
plane R2, we basicly do the same thing as we did in (1.2).

When Σ is not identity, the quadratic form in the exponential (x− µ)TΣ−1(x− µ) indicates
a ellipsoid. So the contour lines of Gaussian are a group of concentric ellipsoids centered at µ.
We can make a change of variable to the quadratic form v = Σ−1/2(x− µ), x− µ = Σ1/2v. The
exponential term becomes exp(−1

2v
T v), which has the form of a standard normal which integrates

to 2π, as shown in (1.2). However, the term 1
(2π)n/2 itself does not give use the normalizing

constant. When we apply a linear transformation x − µ = Σ1/2v, we have also scaled the area
over which we integrate the pdf. Each unit area ds is scaled by |Σ1/2|, thus we want to scale each
unit probability P (x ∈ ds′) down by |Σ1/2| = |Σ|1/2 so that the pdf integrate to 1. The scaling is
shown in figure 3.

3 Conditional of Multivariate Gaussian
Conditional distribution of a multivariate Gaussian comes up from time to time in all kinds of
contexts. For example, linear Gaussian Bayesian network and factor analysis. However, the
formulas for conditional expectation and conditional covariance matrix is quite mysterious. In
this section, I want to derive the conditional expectation with a convex optimization point of
view and derive the conditional covariance by simply inverting a block matrix. This may not
be the easiest way to derive the formulas, but I hope these can provide you a new perspective.
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Figure 3

We assume the random variable X = [X1, X2] has a joint distribution X = [X1, X2] ∼ N (µ,Σ)
where

µ =

[
µ1

µ2

]
(3.1)

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(3.2)

and Σ12 = ΣT
21.

First, we can easily conclude that the conditional distribution of a multivariate Gaussian
distribution is also a Gaussian distribution because when we fix X2, the terms not relevant to X1

comes out of the exponential as a constant, and the remaining terms in the exponential is still a
quadratic form. So it still have a Gaussian pattern, except that we need a different normalizing
constant.

3.1 Conditional Expectation of Multivariate Gaussian

Once we have the conclusion that the conditional distribution of a multivariate Gaussian distri-
bution is also a Gaussian distribution, we can formulate the problem of finding the conditional
expectation as a optimization problem since a Gaussian PDF achieve the maximum at the ex-
pectation. Thus, when we condition on X2 = x2, we can write down the optimization problem

minX1 .
1

2

[
X1 − µ1 x2 − µ2

]
Σ−1

[
X1 − µ1

x2 − µ2

]
(3.3)

which is a convex problem since Σ is a positive definite matrix.
If we don’t have the inverse if Σ, we can easily write the quadratic form with block notation of

Σ and solve the problem by simply setting gradient to 0. However, with the inverse sign, we need
to resort to more advanced optimization techniques. We can introduce a "redundant" equality
constraint X2 = x2, and formulate the optimization problem as

minX1,X2 .
1

2
(X − µ)TΣ−1(X − µ)

s.t. X2 = x2 (3.4)
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where X =

[
X1

X2

]
. The Lagrangian is

L(X1, X2, v) =
1

2
(X − µ)TΣ−1(X − µ) + vT (X2 − x2) (3.5)

∇XL(X1, X2, v) = Σ−1(X − µ) +

[
0
v

]
:= 0 (3.6)

X∗(v) = −Σ

[
0
v

]
+ µ (3.7)

where X∗
1 (v) = −Σ12v + µ1, X∗

2 (v) = −Σ22v + µ2, thus the dual function is

g(v) = inf
X1,X2

L(X1, X2, v)

=
1

2

[
0 v

]
ΣΣ−1Σ

[
0
v

]
+ vT (−Σ22v + µ2 − x2)

= −1

2
vTΣ22v + vT (µ2 − x2) (3.8)

The dual function, as convex Lagrange duality suggests, is a concave function. And the inverse
of Σ no longer exists. We can easily compute the dual optimal by setting the gradient to 0,

∇vg(v) = −Σ22v + µ2 − x2 := 0

v∗ = −Σ−1
22 (x2 − µ2) (3.9)

Since there’s no inequality constrains in problem(3.4), slater condition (trivially) holds, so p∗ = d∗,

p∗ = d∗ = g(v∗) = L(X1(v
∗), X2(v

∗), v∗)

X∗ = −Σ

[
0
v∗

]
+ µ

X∗
1 = −Σ12v

∗ + µ1 = µ1 +Σ12Σ
−1
22 (x2 − µ2) (3.10)

X∗
2 = −Σ22v

∗ + µ2 = x2 (3.11)

Thus we have the conditional expectation of a multivariate Gaussian distribution.

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2) (3.12)

(we don’t need to compute (3.11), but it’s good to double-check the feasibility to ensure that we
did the correct calculation.)

3.2 Conditional Covariance Matrix of Multivariate Gaussian

Now we have the conditional expectation of a multivariate Gaussian, what we need now is the
conditional covariance matrix. Since we know that the conditional distribution of a Gaussian is
also a Gaussian, we can write the PDF of X1|X2

fX1|X2
(X1|X2) = C · exp(−1

2
(X1 − µ1|2)

TΣ−1
1|2(X1 − µ1|2)) (3.13)
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where C is the normalizing constant. We now have µ1|2 according to (3.12). We now want to
find Σ−1

1|2, the coefficient of the second-order term for X2. From (3.3), we can see the second-order
terms for X2 only relates to the upper-left block of Σ−1. Thus, Σ−1

1|2 is the upper-left block of
Σ−1, in other words, we want to find Σ1|2, which is the inverse of upper-left block of Σ−1.

The problem is how do we symbolically compute Σ−1. Actually, we can do this from a linear
equation point of view.

First, we can write down a linear equation about Σ[
Σ11 Σ12

Σ21 Σ22

] [
x
y

]
=

[
u
v

]
(3.14)

Since Σ is a positive definite matrix, if we can write down a matrix A such that A

[
u
v

]
=

[
x
y

]
,

then A must be inverse of Σ. And we can come up with such a matrix A by block elimination.
First, we can we eliminate y by expressing y in terms of x. According to the second row block

Σ21x+Σ22y = v

y = Σ−1
22 (v − Σ21x) (3.15)

and according to the first row, we have

Σ11x+Σ12y = u (3.16)

plug (3.15) into (3.16)

Σ11x+Σ12Σ
−1
22 (v − Σ21x) = u

x = (Σ11 − Σ12Σ
−1
22 Σ21)

−1(u− Σ12Σ
−1
22 v) (3.17)

then plug (3.17) into (3.15), we have

y = Σ−1
22

(
v − Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1(u− Σ12Σ
−1
22 v)

)
= −Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1u+

[
Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

]
v (3.18)

Before anything else, I want you to pause for 5 minutes and just appreciate the beauty of math.
Look at the coefficient for v in (3.18), it show some "recursive-symmetric" pattern.

According, to (3.17) and (3.18), we can write down a linear equation

A

[
u
v

]
=

[
x
y

]
A =

[
(Σ11 − Σ12Σ

−1
22 Σ21)

−1 −(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

−Σ−1
22 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1 Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

]
(3.19)

thus A must be Σ−1. So the quadratic terms of X1 can be written as XT
1 (Σ11−Σ12Σ

−1
22 Σ21)

−1X1

and the conditional covariance matrix is

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (3.20)

(3.20) is called a/the schur complement of Σ.
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3.3 Exploiting the Structure Further

Now we have the conditional covariance matrix. However, (3.18) looks very cumbersome, can we
simplify it a little bit? Actually yes. We get (3.18) by expressing y in terms of x, what if we
express x in terms of y first? When we eliminate y, we get a linear equation like the following

B

[
u
v

]
=

[
x
y

]
B =

[
Σ−1
11 +Σ−1

11 Σ12(Σ22 − Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 −Σ−1

11 Σ12(Σ22 − Σ21Σ
−1
11 Σ12)

−1

−(Σ22 − Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 (Σ22 − Σ21Σ

−1
11 Σ12)

−1

]
(3.21)

Let’s compare (3.19) and (3.20), A and B are both inverse of Σ, they must be the same. Thus
we can get two not obvious identity,

(Σ11 − Σ12Σ
−1
22 Σ21)

−1 = Σ−1
11 +Σ−1

11 Σ12(Σ22 − Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 (3.22)

−(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 = −Σ−1

11 Σ12(Σ22 − Σ21Σ
−1
11 Σ12)

−1 (3.23)

Also, it seems to be natural that we expect similar formulas for Σ2|1 and Σ1|2.

4 Marginal of Multivariate Gaussian
Now we have the conditional expectation, conditional covariance matrix, some identities according
to (3.22) and (3.23), and the block representation of the inverse of covariance matrix according
to (3.19) and (3.21). We can use these to derive the marginal of a multivariate Gaussian. First,
let’s write the inverse of the covariance matrix Σ in blocks

Σ−1 = J =

[
J11 J12
J21 J22

]
(4.1)

The PDF of the multivariate Gaussian can be written as

fX(x) =
1

(2π)n/2|Σ|1/2
exp

[
− 1

2
(x− µ)TJ(x− µ)

]
=

1

(2π)n/2|Σ|1/2
exp

[
− 1

2
[(x1 − µ1)

TJ11(x1 − µ1) + 2(x1 − µ1)
TJ12(x2 − µ2) + (x2 − µ2)

TJ22(x1 − µ1)]

]
(4.2)

Let’s only look at the quadratic term in exp(·) and plug in the block representation of J ’s with
what we got in (3.19) and (3.21).

(x1 − µ1)
TJ11(x1 − µ1) + 2(x1 − µ1)

TJ12(x2 − µ2) + (x2 − µ2)
TJ22(x1 − µ1)

=(x1 − µ1)
T

[
Σ−1
11 +Σ−1

11 Σ12(Σ22 − Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11

]
(x1 − µ1)

− 2(x1 − µ1)
T

[
Σ−1
11 Σ12(Σ22 − Σ21Σ

−1
11 Σ12)

−1

]
(x2 − µ2)

+ (x2 − µ2)
T (Σ22 − Σ21Σ

−1
11 Σ12)

−1(x1 − µ1)

=(x1 − µ1)
TΣ−1

11 (x1 − µ1)

+ (x2 − µ2 − Σ21Σ
−1
11 (x1 − µ1))

T (Σ22 − Σ21Σ
−1
11 Σ12)

−1(x2 − µ2 − Σ21Σ
−1
11 (x1 − µ1))

=(x1 − µ1)
TΣ−1

11 (x1 − µ1) + (x2 − µ2|1)
TΣ−1

2|1(x2 − µ2|1) (4.3)
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Then (4.2) can be written as

fX(x) =
1

(2π)n1/2|Σ11|1/2
1

(2π)n2/2|Σ22 − Σ21Σ
−1
11 Σ12|1/2

exp
(
− 1

2
(x1 − µ1)

TΣ−1
11 (x1 − µ1)

)
exp

(
− 1

2
(x2 − µ2|1)

TΣ−1
2|1(x1 − µ2|1)

)
=

1

(2π)n1/2|Σ11|1/2
exp

(
− 1

2
(x1 − µ1)

TΣ−1
11 (x1 − µ1)

)
fX2|X1

(x2|x1) (4.4)

where n1 is the dimension of X1 and n2 is the dimension of X2 (i.e. n1 + n2 = n). In the first
equal sign we use the fact that the determinant of a psd matrix is equal to the determinant
of the upper-left block times the determinant of the schur-complement. Using the law of total
probability, we can easily conclude that

fX1(x1) =
fX1,X2(X1, X2)

fX2|X1
(x2|x1)

=
1

(2π)n1/2|Σ11|1/2
exp

(
− 1

2
(x1 − µ1)

TΣ−1
11 (x1 − µ1)

)
Thus we conclude that in a joint distribution[

X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
The marginal distribution is

X1 ∼ N (µ1,Σ11)
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