


- Forward sampling

def fmward - sample LB : Bayesian Newark) :
Lee Xi - - Xn be a topological ordering of x

for -1=1 , - - R :

U ; = Parents ( X:)

sample A. from PCX:/ u:)

return IN ,
-

- Nn )

from a set of particles D= { ÉLD
.

.
- ' ELM] } generated via forward sampling

can estimate the expectation of any f- as

I.f) = Ym É, f- ( Gtm] )
in case of computing Plp

"

Poly) = 4m¥, L{ÉLmKD=y ) 115hm] is the assignment to variables 9 of partial Efm]

Consider the gpahy of the estimate for a particular event toy
define a new random variable KEY } ,
M particles in D define A Independent Bernoulli trials . each with pobabihy pity) =p

let Z:=L{GERY> =y } . Plz : =D=p = PG=y) ( Z. ~ Bernoulli (f) .
iid )

ftp..ly ¢ [ Poop - E. Right] ) =P. ( I>YI -PYI %) -1 Blimp - PYKE ) Hoeffdig's Inquahy :

=p, /The -72: - iu-I.EE:] > E) + -
-
r let Z .

.
- Zn be independent bounded to <a ← Zi ←be too

=P, I n't .IE, - Etzi] ) # + Blin -7ft: - Ett:D ± - t ) plot TÉ, lzi-F-tt.is/st1--expl-gEa-)
c- 2. expl -2ME) ptn-E.IE: - EE:] ) e-e) eexpfib.TT)

Zexpl-2Mt) ← f

Ms KIM

P (1%14) ¢ [Bly) Ito , Bapu-it, ] ) ± ze
-MPH ' % ± g

Ms 3¥¥¥-

When
quarry CPDS Pity Heel, we can shyny perform forward samphy

and reject those particles incompatible with Fire.

if PIE =D -0.4
. only in out of 1W can be used to compute PH-YIE.es



' Likelihood Weighting

Assume we have evidence D=d'

.

5=5

pls-slz.it 804 PCS-sik-iit.it

To simulate this long-run behavior within a single
sample . we should conclude that a sample

when E- it 8=5 should be worth 804 f- a sample
a sample when 2=05--8 should be north 54 of a sample

when we have multiple observations and we want our sampling process to see all of them to
their observed values

. we need to consider the probably that each of the observation nodes .

had it been sampled using the standard forward sampling , would have resulted in the observed values
.

The sampling events for each node in forward sampling are independent . hence the weight fm each sample should

be the product of the weights induced by each evidence node separately

def t.la/-ihwd-weigh-oed-samplaylB:BayesianNeoouerX.Z2---z- g. evidence I :S'

let Xi , - . . ,Xn be a topological orderly of X sample D=d
'

sample E- i

WH
pls

' Ii)= 0.05

for 1=1
,

- .
-

,
n sample Gj see f- si

U: = Pal X-D ✗ assignment to Pak;)
HHJY⇒"

se, ↳,

if X: 4- 2- :

sample X: from PIX:/ U:)

else :

Xi = Z: 11 set assignment as observation the weight for the sample ( d
'

ii.

j.li/--o.axo.osW--w.PlNi1U:|

return IN, ,
-

- Nn)
. W

This process generates a weighted particle
can estimate a conditional probably Piglet with M Weight particles (BET . Wth ); - ; ( btw. WLMI )

BHk1=Éiw÷¥!!Ym

g. ④ 1%-2%8 Suppose we gnaw
2k samples when Aai and 8k samples when Aoi (with

fmwadsamply.M-toklf-b.bgamong those , # la: b.) = it . plbtoil # la:b) = 8k . paid )

at 0.703 ftp.plbolay ÉPÉE }

plain = ¥#É#:h =

www.j-ipe.pib.la#=E-PltiH""wane Pla' / b.)



'

Importance Sampling

Importance sampling is a general approach fm estimating the expectation of a function fix
relative to some target distribution PIN

generate XE] -
- - XEM] Tid Xt:] ~p Eplf ) tu Ym f-HIM])

sometime we may want to generate ✗ from a proposal distribution /sampling distribution QIN , which is different from PW

tegfiirhy that * x . if Plxbo, then am>o l the support of a {Halabi contains the support of P)

how to obtain estimates of an expectation relative to P by generating samples from a different distribution R

' Un normalized Importance sampling
F-

✗→
[fun]=E×a[fw¥¥] EepIfail = fafnnptddx-f.am . ftp.Pd#*dx--E*a-LfwPdY-x, ]

Un normalized importance { 1° generate Xti] - - . ✗Im] iid
.
✗I:] now

sampling estimator no E.f- I = You . E. f-He:D .

E.II. ifD= F-*at YME.tl#H I ] sample is from a
= 1m¥ F-*[far:D , ]
= YM.ME F-

xp [1-1×1]
= 1×+1fail the Unnormattted importance sawfly estimation is an

"

unbias
"

estimation f F-ptfHD

Varina [I.f-if = Varma[at Enfant , ]
= it - Varma ( fix:S "a¥⇒
= it . / F-willfix D- F-*affair J )
= tm I F- a [Ifan * IT - Eptfast ) variance of estimator

11 the closer PIN and Axl are
,
the better performance importance sampling has

g- f- It ⇒

var.net#fD--m'--LEa-HPdFnT-EaIPa**51--iu-.varlP-a1
when f- Is a constant function, the estimator has a higher var when P is different from a



' Normalized Importance Sampling
PTH is a unnormalized distribution

Ewa if = f. any ¥É, dx = z

T⇒→[fHD =L, Phil find✗ = Tx Clan fix, P¥-× , da = Éf. Ann fix,%¥×, dx

= É F-we [fail F¥, ]

Emilf-xD = £¥¥¥¥¥¥¥ can use an empirical estimator fm both numerator and denominator

Given M samples D={XI] . -
- - HIM } ✗Edna iid

.

I.A) = ?¥"z¥¥¥l¥¥É normalized Importance sampling estimator

17¥ does not defund on c)

for finite M , the estimator is biased
, the bias goes down as tu

varpt-I.ae Ifm] = Tu Van.tt#JlHvara-LPTeY-xD ) the variance also goes down as Tu

In practice the variance of the normalized estimator is lower that var of annormalised estimator

the reduction in variance often outweighis the bias term, so the normalized estimation is used even when p is known

when estimate Eplf ] with a standard sampling method

Varp [ II.→ Ifl] = varplit-I.fm/=juvarplfixD

the ratio between 2 Variances is ¥rÑ¥, ]
AVarp[Épl#
µ . varp-LI.ve Ifs]

= ¥Ñ¥⇒
M . varp-LIaplfif-HYar-a-LPIH.is Varp [ Éivalfs ]

the effective sample size for normalized
importancesamphy.is#aralHtxDvaral**l=E:FaYii!-si-I !¥%⇒i



- The mutilated Network Proposal Distribution Importance Sampling
let B be a network and 2- =z be an instantiation of variables
define the mutilated network Bz⇒ as

each node E. EZ has no parents in Bz⇒ , and take deterministic OPD PIE -- 2- it -4

other nodes and CPDS unchanged .

1¥: i
Difficulty Intelligence

let E. be a samplegenerated by
"

likelihood weighting
"

and w kits weighty #¥ Grade
.

"

sat ÷¥÷÷;
wig)=¥¥¥g) letter

¥-0
"

Binay
can compute the prob Ptt⇒ 1

. Where the target distribution P is Robb
the proposal distribution Q Is PBZ⇒ IN

zz=z)=E*p[L{✗(a) ⇒ } ] = f. pin . 18K€>⇒ 3 dx

=L, Alan . P¥ag, . L{K€>⇒ 3 dx

= Iowa [ P¥y 1- {k⇒=z } ]
a. fu ¥2

,

Wi - L{Xia>⇒ 3

1^312--2-1 = Tu Ein Wi 11 sample from Q=B¥⇒ , i. Zeit holds fm all samples
Piglet = P¥¥ 11 both numerator and denominator can be computed y importance sampling

{ Yen::*:÷:¥;:÷÷÷÷¥, ::: '¥÷÷÷¥¥÷÷¥:÷
*yet "%÷÷I¥÷

def data
- dependent - likelihood - weighing 1B: Bayesian net went, 2-2=2 .

U : upper bound on OPD entry of z
t : desired error bound , f. desired probably of error ) :

y = 41T¥ In } 1<=12-1 Woo Mo

while W < Tut :

5. w = likelihood
- weighted - samplingB. 2- =D

W += W

µ -1--1

Klum w/M H 1^314 With P / 4- E) Prslz) ← 17,14 ← Ht) Ppdz) ) 28



' Normalized Likelihood weighting

want evaluate Patel , evaluating Myles * yo valid is too expensive

Apply normalized importance sampling .
when the

target distribution
15174 is PHX. e)

,
the unnmmalied version of p

the proposal distribution QIN is B¥e(Xie )

F- at if =L, and %¥, dad =z

Bf 7- y /e) = F-✗→ [ 19×4>-43] = PhD

.LK/L47--y3dx--faxHlnK41--y3PdY-xidX--z-fxatxILEk9s-y}¥¥, dx
= É F-

*of LEMs-y}*, ]

*1¥ykt. ¥÷E¥¥¥%¥⇒_

{ sample
D= {BE]. WE ] ) . - ( ELM]. WIND } with likelihood weighting Fee

I. lyle) = FKq.IE?Y--MwH-*yc- valid

the quality of the importance sampling estimator depends largely on how close Panda .

if all evidences are at nots
.
Fob = AH , Ilylet = in I. Hestia> -73 is exactly the posterior

if all evidences on air leaves . AM is the prion PBM. Rifles aim I. Hestia> -43 only when Aslak Pistil, e)

- Gibbs sampling

def gibbs- Sample L X : see if variables to be sampled . E. factors defining Po
.

P'" M : initial state distribution . T: time steps ) :

sample X
" from Pl" IN

for -1--1. . . - it: keg. P'
" 1×1 can be the distribution induced by mutilated network

✗HI = ✗ Ith

for each X: EX :

sample X!
" from Pak:/ Xi )

change 4: in XIH

return X
"

.
. .
.

. X
" '



g. having the observation 8--8 . Eli Difficulty Intelligence
I 4

the set of reduced factor 20 is
Grade SAT

{ PM. RD) . PIGK.DI.PH/D.PlliIG ) } a

letter

begin . sample from mutilated network

d
"=D '

Y'=P g
"
-

g
'

1st iteration : sample in order I say 62 D)

sample g
"
- Polls / d ' , -1° )

Pells Id:o) = P¥%¥; ✗ 1716 ,
d '

.

-

it = Pti) Pldt . Plan :D
'

) Milat pistil

(multiply all factors that contains a. with other variables instantiated
,
and tenmmalize won G.)

g"=g
"

sample i
"
~ Both digs)

-

i. = -1
'

sample d
"
- HID / i.g)

The sampling process for G takes into consideration the downstream evidence at child L

i. is aynbly chosen to the posterior than forward sampling
As we repeat the sampling process , the distribution from which we generate each sample
gets closer and closer to the posterior Path =PMe)

' Markov 0ham
A Markov 0ham is defined via

{ a state space raw

a model defines a next -state distribution over Valk THAT = PLAIN )

rÉ% ansG
o-is 0¥÷

pH"YxtH=ni) = ¥µµ, PIK"=x) . THAT

Markov chain Monte Carlo IMCMI ) sampling is a process that mirrors the dynamic of the Markov chain

def MCMC
. sampled P

"'M : initial state distribution ,
T: Markov 0ham transition model . T: time steps

1
:

sample ✗"
' from P

"'M

for 4=1 . - " > T :

sample ✗
"" from THE

"
→ X )

return Xl" . - . . ✗HI



As the process converges . we world expect
that Pt"" to be close to pH

( Markov matrix has at least eigenvalue 11=1 and A : C- 1 for all e.us )
.

The resulting distribution TUN being an equilibrium /steady state

A distribution NH is a stationary distribution for a Markov chain T if
H=xj=¥va1µ, hlt-HTH-r.it (a) Twin

[+ Jpy
NH is an eigenvector of T associated with eigenvalue At

g. periodic Markov chains Ttx →xy⇒ 1

THEM-4
" A

7=-1%1 ix. us}={HEIR
only one eymtetm.no Anyone to a stationary

distribution

there is no guarantee that MCMC sampling process converges to
a stationary

distribution

g. reducible Markov chains

f. X, É Mr XD

F- [6%0] {His}={HI:b ,
HEH

.
lab . It }

0 0.2 1

P'"* = a. i:[ to] + a. i. + b. act . -1¥]
when P

"'m c. I:X of:X HI]
there is no guarantee that the stationary distribution is unique

A Markov chain is gular if 7- K se .

* ix. X
'

Gratin . the probably of getty from ✗ tort in exactly K steps is so

G- G
'

go.is

1C
,
X,
É Mr -7 As It 0-15 0¥÷

not regular regular ,
F- 2

If a finite state Markov chain T is regular . then it has a unique stationary distribution
( if a- Ty 4 and § Ty -1 then T has a ev A- 1 and other e.us did ) ( perron - frobenius theorem )



• Markov 0ham : Multiple Transition Models

decompose the transition model
.
States of which consists of several vars

.

consider transitions that update only a single variable at a time

define a set of transition models
,
each with its own dynamics .

each such transition model Yi is called a kernel

In the case of graphical models . can define a multi kernel chain
have a kernel T.fm each Xi ER .

model T; takes a state titi
. Hit

to a state Gti
,
X! I

- Gibbs sampling via Markov 0ham
wish to generate samples from posterior PIXIE-et
thus need to define a chain fan which PH Heel is the station any distribution

Gibbs sampling is based on the multi kernel 0ham
T:/ Hi, , A.)→ IX.i.kill = Ptx ! Hit

the transition probability does not depend on the current value Ai ,

depends only on Hi , PLH e) is a stationary distribution of Gibbs sampling

let P'
"HI =PHk)

.
Gibbs sampling updates Xi at this stop .

P'"
"

txi.xi.it = Evan PHX; it;) - Think:)→ txi.x.it )

= FEW, P'
"txiixil . T.tl#ixii-sH-i.x-iD when applying Gibbs sampling with Markov chainT://xi.x-I-slx.in/-:D--PlXiH:l=.TE.w.iPHi.XiiletPtxitxi.e1if Hux;) ~ pales

= Evian Ptxiixiikl . P¥¥i thenlx-i.x-il~plxleti.PHis a stationary distribution of Gibbs sampling= Fenian "**Hi P¥¥Yj¥i¥÷,
=pIX.:X-ite)

calculate the transition probably
Paw = I jogHp

= ¥ ¥1:try bby ) ' ¥1: ¢ Dy dy ID'd

Phil#1-- P¥¥¥=¥!¥i¥¥→
= z-lF.HBKH.int:11#*yDg1tk:1z-E.lI!e.gDj)txiAt:H¥¢µDyl Hit
= renmmaliaef DjWiik:))Xi

use only the factors involving Xi
, depends only on the instantiation of His Markov Blanket



Difficulty Intelligenceg F- = {5--5.2--0}
x

TI ( i. g. d.si , lil → Ligi d. sit1) =P1g
' / i. d. s '.tl Grade SAT

to

Plg
'

Ii . d. s
' .tl = P¥;;÷!% letter

= É - 4.101.4-444%18*-4.4ski , -4.410 .gl
= henormal in Italy ! d. it -4dB:j) )

let It be a Markov network se. all of the clique potentials are strictly positive .
then the gibbs - sampling Markov chain is regular

- Broader class of Markov Chain
In continuous models , the conditional prob PIHA:| May not have a parametric form that albus sampty
the Gibbs samphy is not applicable

The Gibbs Sampley updates one var at a time, if vans are highly correlated. anyone may bestow

A finite-state Markov chain T is reversible if
7. a unique distribution to St H X , X

'

c- raw
won . Think 7ohm . TH'm detailed balance

2h11 . Ttx→ IN = prob of a transition IHH

detailed balance : transition Ani is equally likely as Nox

reversibility implies that to is
"

a
"

stationary distribution of T
-2×21×1 . THAN) = ¥74M - Thi→ x ) = WHY . Ex Thi-41 ) = Nail

hat =-3 Nail - Ytxsnil
( not Nassar : 4 that the chain will converge to 8)

if a Markov chain is regular and satisfies the detailed balance equation relation to to

then Tv is the unique stationary distribution of T

in the case of multiple kernel . if each kernel T: satisfies the detailed balance equation
then so does the mixture transition model T



- Metropolis - Hasting Algorithm
a general construction that allows to build a reversible Markov chain with a particular stationary distribution

The proposal distribution 40 defines a transition model oven state space
At each transition

,
we can{

either accept the proposal and transition to A
'

or reject the proposal and stay and ✗

for each pair of states tx.nl , have a acceptance probability Nikhil
The actual transition model of the Markov chain is

Thing = Town -Atx→nil 11 probably of make transition

THAI = THAN + ¥+519k-nil . f-Atx-xD Dprob of stagy
= plstap-IPHrans-pkejei.it

Given a proposal distribution TQ can use the detailed balance equation to select the acceptance probability
huh 74kW. Alanis ⇒unit YUAN - AIN-six)

Gtm any proposal distribution 49 consider the markov cham {
THANK -14×-4111×-1×4

THAI = Talk-1×1 -1¥, THAN HAHA'D

when Amit- min -11 . Y¥•¥*, ]
if the Markov 0ham is regular , then it has the stationary distribution to

if ¥¥÷Y¥¥, a *x.no =¥¥¥¥ , Anima
ath . Tex→xy. Alanis = any . yqx-rxy.FI#FFeFEY-xy--ttni1.T9ni-sx1.Aui-ixs
KIND . YIN-1×4 = ftp.TIN-nx)

:
,
the Markov chain satisfies the detailed balance equation
: Iu is a stationary distribution
-

: T is regular
i. 70 is the unique stationary distribution

g. To : got✗ '

yn
Xt

the proposal distribution H is defined by the chain

want to sample from a stationary distribution hlkt-0.rs 74114=075

xnxx.mnE. ¥¥i¥¥:¥→= mink . ¥:÷]=i
HAND = 1/3

T
'

Hink = Marina . sina.nu = 1k T
'

H'→A) = TYNAN + MATH . (1- AWAY ) = 1k

Y
'

Hux') = 74km1 www.xy = Ho Y
'

Hink) = -14×4×-1 + Tawny - It - Atx.→xD ) = 1kt 1k . I =É



the resulting chain T
'

is given } y,€ × . * 9%
-1¥ ] ¥

[
*

%[ f- [
"

: arts a eiynraw/ stationary distribute of T
'

1k 5/6

In the context of Graphical model . each local transition model Ti is defined via an associated proposal distribution %"

(Po is the target distribution, which should be the stationary distribution of the resulting chain

Alki
,
Xi → ✗→,

= min [ 1
, ZH-i.H.Y-T-4.H-i.x://x.sn#yzlAi.Ni) . Till:(Hi, , xp → Wiki ) )

= mint . i¥¥:÷:÷÷l¥÷¥¥¥:÷
when ¥¥¥÷=¥¥!¥¥¥¥¥,- = ¥.IE?.i::;!-=P.nHu:iPztx:1U:l
¥¥,=¥YYu¥- and a. is the Markov Blanket A ×:

Pal Hu:) can be efficiently computed based only on local parametrization

def Metropolis - hasting / X : set of variables to be sampled . 20 : factors defining Pao
,
T set of proposal distribution ) :

initialize ✗* fr -1=0

for -1=1 . . . . T :

sample # from 49#
"
→ ✗

"" I

fm each Xi EX:

propose a transition At:X;) → At:X ! ) via T.it.

compute the aaep-ianap.br#..m-.ox-:ix-.it-minIi . '¥"¥÷÷!,?÷÷¥÷¥¥¥÷÷
change / tap Xi in Ni" wah prob Alix:X :) →Hi, ix.in

KFUM X
"
.
-
- X" '

Gibbs sampling is a special case of metropolis -hasty when the proposal T.it/txiix:Htx.i.xiH--Pzotx.ilxi1

:) P-etxitx.it Paix .:) - ptxitx:)¥¥;",!¥¥É¥ =

pwx.mn#ix..i.pax..y*i---1 the acceptance prob simplifies to 1


