

mund Sampley
def frand-sample is: logical panel),
let
$$N - N$$
 is a stylind mary of Z
 $\beta \in N - N$.
 $N = Phone(X)$
somp α for $(X | U)$
ream. $(X - N)$
for n set of particle $D = \{E(D), \dots E(D)\}$ general is frond samply
cal accords the calcuration of any β as
 $\widehat{T}_{k}(\beta) = M$ $\widehat{T}_{k}(B_{k}(D) = y\}$ $I \in [M(X)]$ is the despective as particle X of particle $\widehat{T}_{k}(0) = M$
 $\widehat{T}_{k}(\beta) = M$ $\widehat{T}_{k}(\beta) = M$ $\widehat{T}_{k}(B_{k}(D) = y)$ $I \in [M(X)]$ is the despective as particle X of particle $\widehat{T}_{k}(0) = M$ $\widehat{T}_{k}(\beta) = \widehat{T}_{k}(\beta) =$

When quaring UDS P(7=y|E=e), we can strong perform for nord sompty and reject those particles in compartible with E=e. if P(E=e) =0.01, and we are strong in can be used to compute P(Y=y|E=e)

Importance Sampling

Importance sompting is a ground approach for extinating the application of a function fice) relative to some target distribution PW

ganove XIJ -- XIM Tid XIJ~P Ep(f) ~ /m f(XIM)

Sometime we may what to ganance X from a proposal distribution/samplay distribution Q(X), which is differen from P(X) required that & a, if P(X) so then Q(X) >0 (the support of a EalQuars) contains the support of P)

hav to obtain estimates of an expectation relative to P by genancity samples from a differen dissolution le

Unnormalized Importance Sampling

 $E_{xy}[f(x)] = E_{x,0}[f(y)\frac{P(y)}{000}] \qquad E_{x,0}[f(y)] = \int_{a}^{a} f(x) P(x) dx = \int_{a}^{b} Q(x) \cdot f(y) \frac{P(y)}{000} dx = E_{x,0}[f(y)\frac{P(y)}{000}]$

Varona [fo(f)] = Varona [to \$ f(x) (R(x)]

= tt · Var ma (fax) fax)

= N (Eng[(fly fig)] - Exa[fly fig]])

= the [for the fight] - Ep[for] + Variance of escinator

I the closer P(K) and Q(K) are, the better performance impercand sampling has

eg - f() =1

 $Vor_{one}[\hat{E}_{S}(f)] = \pi \left[E_{a}[f_{a(x)}^{P(x)}]^{2} - E_{a}[f_{a(x)}^{P(x)}]^{2} \right] = \pi \cdot Vor(E)$ when f is a constant function, the estimator has a higher for a bight of the prior of the form a

Use matrix ind Inspectance Sampling
SW is a communical discrimin
ExelFibel = from Even du = 2
The Fibel = from Even du = from Even Even du =
$$\pm$$
 from the Even the Even Fibel and \pm
 $\pm x = From [Av Even]$
Even [Av Even]
Even [Av Even]

•7

$$\frac{W}{R} = \frac{W}{R} = \frac{W}$$

3, w = 1 kelihad_uqihad_Somfay(B, Z=z) $W \rightarrow = W$

while WK Tut:

M += 1

· Normalized Likelihood Weighting

Want evaluate P(TP), evaluating P(TP) & y & val(V) is two expansive Apply normalized surportance sampling, when the target distribution $\tilde{P}(Z)$ is $P_{\bar{E}}(X, e)$, the unnormalied variant of P the popular distribution Q(x) is $P_{\bar{E}=e}(x, e)$

 $E_{x \sim a}\left[\frac{p_{(x)}}{\omega_{(x)}}\right] = \int_{x}^{x} \left(q(x) \frac{p_{(x)}}{q(x)} d(x)\right) = z$

$$\begin{split} F_{0}(T=y|e) &= E_{x,e}[15xe_{1}xe_{1}y] = \int_{x}^{x} P(\omega) \cdot 15xe_{1}y + 3 dx \\ &= \int_{x}^{x} Q(\omega) \cdot 15xe_{1}y + 3 \frac{P(\omega)}{Q(\omega)} dx = \pm \int_{x}^{x} Q(\omega) \cdot 15xe_{1}y - 43 \frac{P(\omega)}{Q(\omega)} dx \\ &= \pm E_{x,e}[15xe_{1}y - 43 \frac{P(\omega)}{Q(\omega)}] \\ &= \frac{1}{2} E_{x,e}[15xe_{1}$$

 $\begin{array}{l} \left(\begin{array}{c} \text{Sample} \quad D = \left\{ \left(\begin{array}{c} \mathbb{S} L \right), \mathbb{W} L \right\} \right) \cdot \cdots \left(\begin{array}{c} \mathbb{S} L \mathbb{M} \end{bmatrix}, \mathbb{W} L \mathbb{M} \right) \right\} & \text{ with } \text{ the line of weight } E = e \\ \left\{ \begin{array}{c} \mathbb{S} (y|e) \\ = \end{array} \right. = \frac{7 1 \left(\begin{array}{c} \mathbb{S} L \right) \mathbb{S} (y|e) - y \right) \mathbb{S} (y|e) \\ \overline{\mathbb{S}} \mathbb{W} U \end{bmatrix} & \text{ for } y \in \text{ unal } U \end{array} \right\}$

The quality of the informate sampling estimator oblights bydy on how close P and Q. If all acidmas are at nois. F(D) = Q(D). Buyles = the ₹ IESCIKD+y3 is exactly the posterior If all acidmas are at leaves. Q(D) is the prim PB(D). Buyles = the ₹ IESCIKD+y3 and when teld) >> Ps(A,e)

Gibbs Sampling

$$\begin{array}{c} def \\ gribbs = Sample (X: Set of Variables to be sampled, \overline{e}: factors deficing Re , P^{(4)}(X): initial state distribution, T: trine steps): \\ sample $\mathcal{N}^{(0)}$ for $t=1,\ldots,T:$

$$\begin{array}{c} \textit{I'eg. } P^{(4)}(X) & \textit{can be the distribution induced by manufacted accurate the distribution induced accurate the distribution induced by manufacted accurate the distribution induced by manufacted accurate the distribution induced accurate the distribut$$$$

Markov chain Mora Carlo (MCMC) Spanylay 75 a process that minnes the dynamic of the markov chain Old MCMC. Somple (P¹⁰X): initial state distribution, T: Markov Ohain transition model, T: Time staps): Soungle N^{en} flom P²¹X) for t=1,...,T: sample N^{en} flom T(N^{en} +X) return N¹⁰,... X⁽¹⁾

As the process converges, we would expert that $P^{(t+1)}$ to be close to $P^{(t)}$ (Markov matrix has at lease eigenvalue $\Lambda=1$ and $\Lambda:\leq 1$ for all eves). The resulting discribution TOW boy on equilibrium / steady state

A dispribution TUX) to a stationary dispribution for a Markow chain T in 72 =2 TT

XXX) is an eigenvector of T associated with eigenvalue X=1

ey. Periodic marked chains 7(nx = nx)=1 7(nx=nx)=1

 $T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \{ U, v \} = \{ (U, U) \}$

only one gynerection, no benegative to a stationing disvibution

there is no guarantee that MCMC samply process converges to a stationary destribution

gy, reducible marker chams 1 (A) + (A) + (A) $T = \begin{bmatrix} 1 & 0^{\circ} & 0 \\ 0 & 0^{\circ} & 0 \end{bmatrix} \{ (\lambda, v) \} = \{ (L, \lfloor \frac{1}{2} \rfloor), (L, \lfloor \frac{9}{2} \rfloor), (0, L, \lfloor \frac{7}{2} \rfloor) \}$ $P^{(e)}(x) = C_1 \cdot [t^{e}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} + G_{e} \cdot [t^{e}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} + G_{e} \cdot ob^{e}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

where $p^{(0)}(x) = C, \begin{bmatrix} 0 \\ 0 \end{bmatrix} + C, \begin{bmatrix} 0 \\ 1 \end{bmatrix} + C, \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

that is no quarontee that the stationary distribution is unique

A Markai chain is yoular if I k st. If X, X's val(X), the probabily of getting from X to X' in exactly k steps is >0

If a finite State Markov chain T is regular, then H has a unique stationary distribution (if $0 \le T_{ij} \le 1$ and $\frac{1}{2}T_{ij} = 1$, then 17 has a ev $\lambda = 1$ and other ever $\lambda < 1$) (perron-frobenius theorem)

M	arkou	ch	.am	· A	lutij	sk -	Trans	Sitio	n 1	Usoli	s														
	decor	npose	the	trans	ition	mode	1, 9	3tortes	of	which	Consi	ists -	f sav	oral c	brs.										
	DOMSI	der –	transi-	tions ·	that	upolan	e onl	y a	Singl	e va	riable	ar i	x tim	ı											
						1							,												
	defi	re a	Set	of	mansi	tion	Models	, 0	an	WMM	HS I	own	olyna	MILS -											
	ladi	ગાર	h th	ansi-tio	n Mi	odly '	们儿	> Calli	ed a	kern	u														
	1.	the (ase	1 a	antio	al na	dels.	Can	defin	le a	mult	ikem	e ch	ат											
	han	0	bernol	1 (J	Pm 6	adi	XiG)	(mode	d T:	takes	S AL <	stall.	12.1	χ.,)										
	10	as	tate	(Ni)	-χ.')		14.01		,	,	10100-			C II I S	•'/										
				×,			1																		
Gil	20 5	Sam	ling	Via	M	rkov	Ohan	١																	
	wish	to g	enerati	. Sai	mplus	from	post	Qrìor-	P(x)	E=e)															
	thus	næd	to (define	'a (llain	fm i	rtrich	PLX -	£=e)	is th	e St	iation ov	y dist	ributic	n									
_	67.60s	San	nding	is h	aced	ton th	le mu	tiken		ham															
		Л, ((x;,)	X;.)→(Nri, Nri)) =	P(N.	1.																	
	the	transi	tion	probabi	hey d	o <i>l</i> s M	rt de	pend i	on th	e am	ent u	alue,	<u>//i//</u>												
	depun	ds a	nly on	Λ.;	, Pl	XI e) <i>i</i> s	a 5	3-tation	any d	istribu	ithen	of 6	ibbs s	3amphi	y									
	let i	^(x) (x)	= P()	(le)	Gibbs	Sam	ting U	volorus	Xi Ø	e this	serb.														
		P ⁽⁺⁺¹⁾ (;í) =	XGUMIK)	ptt/	() (Xi, (Xi)	· \((Xi, Y,)-	*(ai.x:)														
				=	Z	P ^{tt}	(k), (k-i [*])	· T;((N. X'))→(Xi'.	(L))		when	Orpph	lhy (Gibbs	Sampling	. with	Marko	chaim	<i>Ĵ;</i> ((`	Ki, X-i)-	+(λ', ,).))=}(χ; ¹ χ;)
				_	Z A: Fuld	, (k) P(-	No, No	e).	P(1%;	(χ_{i}',e)			`,f	(X1) X	(j ci) ~	~p(x	e) I U								
				-	Z	PI	Ni Ar	e ·	P(1	X:', X;	e)		ther	l (X1',	x!)	~ }	(xle)								
				_	Z	x) P	(N;,/X).	e) •	P(1	6.41	<u>e)</u>		35	P(Xle)	iS	a	Stationo	ing dis	strible the	r of	Gibbs	Sam	M		
				-	. P(1, 1	.x_;' e	.)		λ, P	(<i>M_i," , M</i> ri	le)							J		<u> </u>		V	0		
	cala	lote 1	the 7	transit	ion pr	obability																			
		Pelk)	= 2	Je	y (g)	,																			
			= 2	z j:X	ity by	(lg) ·	j.k: 4 ag	朝国)																
		P(1).'	$\left \Lambda_{i} \right $		P(n.)	, N;;)		<u>Pľ</u>	Xi Xi Na a)															
			1.4.7		P/%	-i) 		Λ _υ	/ ··· / k																
				7	17	x:ey !))(<i>1</i> (;	(ייאר כ')	·(X;4	g y)((ki)														
					±;	$\frac{2}{\lambda_{i}} \begin{pmatrix} -\\ 0 \end{pmatrix}$	Tieng y)(1 _{k11} ,1	%:) ·(;	XI4g g)	(Ą;i)														
				Ξ	tehon	malize X:	-[(Xien	Pg)('	X:, X:	J														
		USE	only -1	the .	Pa(tors	mol	iy χ;	, d	epends	only	on t	he m	stantia	tim ,	A Y	(;;'S	Markov	Blanket							

$$\begin{array}{l} \begin{array}{l} \begin{array}{c} Q_{1} \\ E = \widehat{\{} \\ S = S', L = U^{2} \\ \end{array} \\ \hline T((i, q, d, s, b) \rightarrow (i, j, d, s', b')) = P(p_{1}^{i} | i, d, s', b') \\ \hline T((i, q, d, s, b') \rightarrow (i, j, d, s', b')) = P(p_{1}^{i} | i, d, s', b') \\ \hline P(q' | 1, d, s', b') = \frac{P(q', i, d, s', b')}{P(1, i, d, s', b')} \\ \hline = \frac{P(q', 1, d, s', b')}{P(1, i, d, s', b')} \\ \hline = \frac{P(q', 1, d, s', b')}{P(1, i, d, s', b')} \\ \hline = \frac{P(q', 1, d, s', b')}{P(1, i, d, s', b')} \\ \hline = \frac{P(q', 1, d, s', b')}{P(1, i, d, s', b')} \\ \hline \end{array} \\ \end{array}$$

Let 7t be a Markov network S.r. all of the clique potentials are strictly positive. Then the gibbs-sampling markov chain is regular

Broader Class of Markov Chain In Dontinuous moduls, the analisimal prob P(X: | n.+1) may not have a parametric form that allows samply the Gibs sampley is not applicable.

The Gibbs samply updates one var at a time, if vars are fightly correlated convergence may be draw

ZUX)·T(X-xX) = prob of a transition X+X deter.led balance: transition X+1X is equally likely as X+1X

 $\frac{\operatorname{reversibility}}{\mathbb{Z}} \xrightarrow{\operatorname{revelue}}_{X} \xrightarrow{\operatorname{reversibility}}_{X} \xrightarrow{\operatorname{reversibility}}_{X} \xrightarrow{\operatorname{reversibility}}_{X} \xrightarrow{\operatorname{reversibility}}_{X} \xrightarrow{\operatorname{reversibility}}_{X} \xrightarrow{\operatorname{reversity}}_{X} \xrightarrow{\operatorname{reversity}}_{X}$

The Markov chain is regular and saturfles the detailed balance equation relative to to them. The is the Unique Stationary distribution of T

in the case of multiple kernel. if each kernel 7: sortisfles the obtailed balance equation than so closes the mixture transition model T

Metropolis - Hasting Algorithm

a general construction that allows to build a reversible Markav Chain with a particular Stationary distribution

The proposal discribution \mathcal{T}^{Q} old phase a transition modul own state space. At each transition, we can feither accupic the proposal and transition to \mathcal{X} .

Given a proposal distribution T^{α} , can use the obtailed balance equation to select the acceptance probability $\mathcal{K}(X)$ $T^{\alpha}(X-X')$. $A(X+X) = \mathcal{K}(X')$ $T^{\alpha}(X+X)$. $A(X+X) = \mathcal{K}(X')$ $T^{\alpha}(X+X)$.

Given any proposal distribution $T^{(0)}_{(\alpha)}$ consider the marked chain $\begin{cases} T(\alpha,n) = T^{(0)}(\alpha+n) A(\alpha+n) \\ T(\alpha-n) = T^{(0)}(\alpha+n) T^{(0)}(\alpha+n) \\ T(\alpha-n) = T^{(0)}(\alpha+n) T^{(0)}(\alpha+n) \\ T(\alpha+n) = T^{(0)}(\alpha+n) T^{(0)}(\alpha+n) \\ T(\alpha+n) = T^{(0)}(\alpha+n) T^{(0)}(\alpha+n) \\ T^{(0)}(\alpha+n) = T^{($

 $\begin{array}{c} -f & \frac{\mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha)}{\mathcal{T}^{\alpha}(\alpha \rightarrow \alpha')} \leq | & & & & \\ \mathcal{K}(\alpha \rightarrow \alpha') = \frac{\mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha')}{\mathcal{T}(\alpha \rightarrow \alpha')} & & & & \\ \mathcal{K}(\alpha \rightarrow \alpha') \mathcal{K}(\alpha \rightarrow \alpha') = \mathcal{T}(\alpha) \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha') = \frac{\mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha')}{\mathcal{T}(\alpha \rightarrow \alpha')} = \mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha') = \mathcal{K}(\alpha \rightarrow \alpha') \\ \mathcal{T}(\alpha \rightarrow \alpha') \mathcal{K}(\alpha \rightarrow \alpha') = \mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha') = \mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha') = \mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha') = \mathcal{T}(\alpha \rightarrow \alpha') \mathcal{K}(\alpha \rightarrow \alpha') \\ \mathcal{T}(\alpha \rightarrow \alpha') = \mathcal{T}(\alpha') \mathcal{T}^{\alpha}(\alpha \rightarrow \alpha') = \mathcal{T}(\alpha') \mathcal{T}(\alpha') = \mathcal{T}(\alpha') \mathcal{T}(\alpha') = \mathcal{T}($

:, the markov choin satisfies the classified balance equation

.. I is a stationary distribution

· Tis regular

2. To is the unique Stationary distribution