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In this note, I want to present a review on the amazing Expectation Maximization(EM) algo-
rithm, including the motivation, derivation and application in two concrete models and in general
bayesian networks. EM algorithm is covered in CS229 by Andrew Ng and in the book Probabilistic
Graphical Models : Principles and Techniques by Daphne Koller, however, in CS229, many steps
in the derivation of mixture of Gaussian model and factor analysis model were skipped, and in
that book, the theoretical foundation of EM algorithm seems to be a little obscure. Hopefully
this note can be a good complementary material for Unsupervised Learning section of CS229 and
chapter 19 of the book by Daphne Koller.

In this note, we will pose the problem of dealing with partially observed data, develop EM
algorithm in a general context, apply EM algorithm in two specific models, and apply EM algorithm
in general Bayesian Networks learning.
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1 Motivation
The EM algorithm is an approach to perform Maximum Likelihood Estimation of partially observed
models or models that includes latent variable. Let’s illustrate this motivation by a simple example
of mixture of Gaussian model.

Suppose we have a random variable Z ∼ multinomial(ϕ), i.e. p(Z = j) = ϕj . We first sample
Z from the multinomial distribution. Having sampled a Z, if Z = j, we sample X from a gaussian
X ∼ N (µj ,Σj), as shown in Figure 1(a). This model can be represented with graphical model as
shown in Figure 2, where θcpd = {µj ,Σj∀j}.

(a) Mixture of Gaussians (b) Observed Data

Figure 1: Mixture of 2 Gaussians

(a) Template model (b) Unrolled model

Figure 2

If we have observed the complete data D = {(Z[1], X[1]), ...(Z[M ], X[M ])}, we can easily get
the maximum likelihood estimation of µ1, µ2,Σ1,Σ2 based on the decomposability of likelihood
function of bayesian network. However, if we have observed only X, as shown in Figure 1(b), how
can we estimate the parameters, having known that the data comes from two Gaussians? The
answer is, not surprisingly, the topic of this note, EM algorithm.

2 EM Algorithm
In the section, we will develop the general framework of EM algorithm. Suppose we have variable
{Z,X} in a model and dataset D = {(Z[1], X[1]), ...(Z[M ], X[M ])}, where X ′s are observed and

2



Z ′s are hidden (not observed and take value "?"), we can still try maximizing its likelihood function,
but what we try maximizing is the "marginal likelihood" l(θ;x[1], ..., x[M ]) in stead of the likelihood
function l(θ;x[1], ..., x[M ], z[1], ..., z[M ]) where θ = {ϕ, µ1, µ2,Σ1,Σ2}. Note that we use upper-
case letter to indicate a random variable and lower-case letter to indicate a instantiation of a
random variable.

l(θ) =
M∑

m=1

logP (x[m]; θ)

=

M∑
m=1

log
∑

z[m]∈val(Z)

P (z[m], x[m]; θ)

=
M∑

m=1

log
∑

z[m]∈val(Z)

Qm(z[m])
P (z[m], x[m]; θ)

Qm(z[m])
(2.1)

In (2.1), for each m = 1, ...,M , we construct a distribution Qm over possible values for Z[m].
Qm seems to be coming out of nowhere. But let keep going on, we’ll see where it lands in a few
minutes. For now we just treat each Qm as a known distribution Having that Qm is a distribution,
we can write (2.1) in the form of expectation

l(θ) =
M∑

m=1

log Ez[m]∼Qm
[
P (z[m], x[m]; θ)

Qm(z[m])
]

≥
M∑

m=1

Ez[m]∼Qm

[
log

P (z[m], x[m]; θ)

Qm(z[m])

]
(2.2)

=

M∑
m=1

∑
z[m]∈val(Z)

Qm(z[m])log
P (z[m], x[m]; θ)

Qm(z[m])
(2.3)

= g(θ)

Having observed the value of x[m], log P (z[m],x[m];θ)
Qm(z[m]) is it self a random variable. In (2.2), we

use the concavity of log function and the Jensen’s inequality that for a concave function f(x),
E[f(X)] ≤ f(E[X]), as illustrated in Figure 3. Then we expand the expectation and get (2.3).

Now we have that (2.3) is a lower bound of the log-likelihood function l(θ) for any valid θ. Just
like what we do in Lagrange duality, a lower bound is not very interesting because the lower bound
may take value −∞. On the other hand, we want to have a good enough low bound. Wouldn’t it
be great if we can have a lower bound that’s "tight" at θ? (2.2) takes equality.

In (2.2), since the log function is strictly concave, the equality holds only when P (z[m],x[m];θ)
Qm(z[m])

is a constant for any value of z[m]. Thus we have Qm(z[m]) = 1
CP (z[m], x[m]; θ). Because Qm is

a probability distribution, it must sums to 1, so we have
∑

z[m]∈val(Z[m])Qm(z[m]) = 1. On the
other hand ∑

z[m]∈val(Z[m])

Qm(z[m]) =
∑

z[m]∈val(Z[m])

1

C
P (z[m], x[m]; θ)

=
1

C
P (x[m]; θ)
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Figure 3: Jensen’s inequality with P (x = 0.1) = P (x = 3.9) = 0.5

Then we have C = P (x[m]; θ), and Qm(z[m]) = P (z[m],x[m];θ)
P (x[m];θ) = P (z[m]

∣∣x[m]; θ).
When we take Qm(z[m]) = P (z[m]

∣∣x[m]; θ), l(θ) = g(θ), and l(θ) ≤ g(θ) for all θ. We can first
take Qm(z[m]) = P (z[m]

∣∣x[m]; θ) to obtain a lower bound g(θ), then maximize that lower bound
over θ to get θ′, then l(θ′) ≥ g(θ′) ≥ g(θ) = l(θ). We get an increase in the log-likelihood function.
The increase in log-likelihood function is shown in Figure 4.

Figure 4: Parameter update in EM algorithm

Then we can conclude the algorithm as following

repeat until convergence

• E-step: Qm(z[m]) = P (z[m]|x[m]; θ)

• M-step: θ = argmaxθ

∑M
m=1

∑
z[m]∈val(Z)Qm(z[m])log P (z[m],x[m];θ)

Qm(z[m])
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Note that logP (z[m], x[m]; θ) = logP (z[m]; θ)+logP (x[m]|z[m]; θ), if P (z[m]; θ) and P (x[m]|z[m]; θ)
are both log-concave in parameters (as a lot of distributions are), we can guarantee to obtain a
global maximum with standard convex optimization techniques.

3 EM for Mixture of Gaussian
In this section, we will apply EM algorithm to mixture of Gaussian model, which is covered in
CS229. Recall that in mixture of Gaussian model, we have Z ∼ Bernoulli(ϕ), and (X|Z = j) ∼
N (µj ,Σj)

l(θ) =
M∑

m=1

log
∑

j∈val(Z)

P (Z[m] = j, x[m]; θ)

=
M∑

m=1

log
∑

j∈val(Z)

Qm(Z[m] = j)
P (Z[m] = j, x[m]; θ)

Qm(Z[m] = j)

≥
M∑

m=1

∑
j∈val(Z)

Qm(Z[m] = j)log
P (Z[m] = j, x[m]; θ)

Qm(Z[m] = j)

≥
M∑

m=1

∑
j∈val(Z)

Qm(Z[m] = j)
[

log(ϕj)−
n

2
log2π − 1

2
logdet(Σj)−

1

2
(x[m]− µj)

TΣ−1
j (x[m]− µj)− log(Qm(Z[m] = j))]

= g(θ)

3.1 E-step

In E-step, we compute

Qm(Z[m] = j) = P (Z[m] = j|x[m]; θ)

=
P (Z[m] = j)P (x[m]|Z[m] = j; θ)∑
k P (Z[m] = k)P (x[m]|Z[m] = k; θ)

=
1

Z

ϕj

(2π)n/2|Σj |1/2
exp(−1

2
(x[m]− µj)

TΣ−1
j (x[m]− µj))

where Z is the normalizing constant.

3.2 M-step

In M-step, we maximize g(θ) over each variable in θ
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• max over µj

maxµj

M∑
m=1

−1

2
Qm(Z[m] = j)(x[m]− µj)

TΣ−1
j (x[m]− µj)

∇µj =

M∑
m=1

Qm(Z[m] = j)Σ−1
j (x[m]− µj)

= Σ−1
j

M∑
m=1

Qm(Z[m] = j)(x[m]− µj)

= Σ−1
j (

M∑
m=1

Qm(Z[m] = j)x[m]−
M∑

m=1

Qm(Z[m] = j)µj) := 0

µj =

∑M
m=1Qm(Z[m] = j)x[m]∑M

m=1Qm(Z[m] = j)

• max over Σj

let Aj = Σ−1
j

maxAj

M∑
m=1

Qm(Z[m] = j)
[
− 1

2
logdet(A−1

j )− 1

2
(x[m]− µj)

TAj(x[m]− µj)
]

= maxAj

M∑
m=1

Qm(Z[m] = j)
[
logdet(Aj)− (x[m]− µj)

TAj(x[m]− µj)
]

= maxAj

M∑
m=1

Qm(Z[m] = j)
[
logdet(Aj)− tr(Aj , (x[m]− µj)(x[m]− µj)

T )
]

= maxAj logdet(Aj)
M∑

m=1

Qm(Z[m] = j)− tr(Aj ,
M∑

m=1

Qm(Z[m] = j)(x[m]− µj)(x[m]− µj)
T )

∇Aj = A−1
j

M∑
m=1

Qm(Z[m] = j)−
M∑

m=1

Qm(Z[m] = j)(x[m]− µj)(x[m]− µj)
T := 0

Σj = A−1
j =

∑M
m=1Qm(Z[m] = j)(x[m]− µj)(x[m]− µj)

T∑M
m=1Qm(Z[m] = j)

Here we use the fact that the logdet(·) function is concave and that ∂
∂X logdet(X) = X−1 for

symmetric positive definite X. Refer to Appendix A for more detail.
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• max over ϕ

maxϕ

M∑
m=1

∑
j∈val(Z)

Qm(Z[m] = j)log(ϕj)

s.t.
∑
j

ϕj = 1

= minϕ −
M∑

m=1

∑
j∈val(Z)

Qm(Z[m] = j)log(ϕj)

s.t.
∑
j

ϕj = 1

We use Lagrangian to solve this optimization problem.

L(ϕ, v) = −
M∑

m=1

∑
j∈val(Z)

Qm(Z[m] = j)log(ϕj) + v(
∑
j

ϕj − 1)

∇ϕj
L = − 1

ϕj

M∑
m=1

Qm(Z[m] = j) + v := 0

ϕj =

∑M
m=1Qm(Z[m] = j)

v
g(v) = inf

ϕ
L(ϕ, v)

= −
M∑

m=1

∑
j∈val(Z)

Qm(Z[m] = j)log

∑M
m=1Qm(Z[m] = j)

v
+

M∑
m=1

∑
j∈val(Z)

Qm(Z[m] = j)− v

∇vg =
1

v

M∑
m=1

∑
j∈val(Z)

Qm(Z[m] = j)− 1 := 0

v∗ =
M∑

m=1

∑
j∈val(Z)

Qm(Z[m] = j) = M

ϕ∗
j =

∑
m=1Qm(Z[m] = j)

M

Thus we can conclude the EM algorithm for mixture of Gaussian model
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Algorithm 1: Algorithms for solving mixture of Gaussian
while not convergence do

E-step:

Qm(Z[m] = j) =
ϕj

(2π)n/2|Σj |1/2
exp(−1

2
(x[m]− µj)

TΣ−1
j (x[m]− µj))

Qm(Z[m] = j)/ =
∑

j∈val(Z)

Qm(Z[m] = j)

M-step:

µj =

∑M
m=1Qm(Z[m] = j)x[m]∑M

m=1Qm(Z[m] = j)

Σj =

∑M
m=1Qm(Z[m] = j)(x[m]− µj)(x[m]− µj)

T∑M
m=1Qm(Z[m] = j)

ϕj =

∑
m=1Qm(Z[m] = j)

M

end

Figure 5 shows the result of Algorithm 1 on observed data of Figure 1(b).

Figure 5

4 EM for Factor Analysis
In this section we apply EM algorithm to factor analysis model, which is also covered in CS229.
In factor analysis, there is a random variable Z ∼ N (0, 1). Having observed Z, random variable X
has a linear Gaussian distribution X ∼ N (µ+ λZ,Φ). Figure 6 illustrates a factor analysis model
with λ = ( 21 ), µ = ( 00 ), Φ = ( 1 0

0 2 )
Factor analysis model can also be represented with a graphical model that’s similar to Figure

2(a), except that the variable Z has no parameter and the CPD P (X|Z) is a linear Gaussian
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Figure 6: a factor analysis model with λ = ( 21 ), µ = ( 00 ), Φ = ( 1 0
0 2 )

instead of a Gaussian.
In factor analysis, if we only observe X, we can apply EM algorithm to estimate λ, µ and

Φ in a similar way as we did in mixture of Gaussian model. But in factor analysis, since Z is
continuous, we need to replace a sum with integral. Let θ = {µ, λ,Φ} be the set of all parameters.
The log-likelihood function can be written as

l(θ) =

M∑
m=1

log(P (x[m]; θ))

=
M∑

m=1

log

∫ +∞

−∞
P (x[m], z[m]; θ)dz[m]

=
M∑

m=1

log

∫ +∞

−∞
Qm(z[m])

P (x[m], z[m]; θ)

Qm(z[m])
dz[m]

=
M∑

m=1

logEZ[m]∼Qm

[
P (x[m], Z[m]; θ)

Qm(Z[m])

]

≥
M∑

m=1

EZ[m]∼Qm

[
log

P (x[m], Z[m]; θ)

Qm(z[m])

]

=
M∑

m=1

∫ +∞

−∞
Qm(z[m])log

P (x[m], z[m]; θ)

Qm(z[m])
dz[m]

= g(θ)

To derive the EM algorithm for factor analysis in a general form, we suppose Z ∈ Rn1 , X ∼ Rn2 ,
λ ∈ Rn2×n1 , Φ ∈ Rn2×n2 .
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4.1 E-step

In E-step, we compute Qm(z[m]) = P (z[m]|x[m]; θ). We can infer this conditional distribution
from the joint distribution. We can write the joint distribution as

P (x[m], z[m]; θ) = P (z[m]; θ)P (x[m]
∣∣z[m]; θ)

=
1

(2π)n1/2
exp(−1

2
z[m]T z[m])

1

(2π)n2/2|Φ|1/2
exp(−1

2
(x[m]− λz[m]− µ)TΦ−1(x[m]− λz[m]− µ))

=
1

C
exp

[
− 1

2
[ z[m] x[m]−µ ]

[
I+λTΦ−1λ −λTΦ−1

−Φ−1λ Φ−1

][
z[m]

x[m]−µ

]]
Thus the joint distribution also has a Gaussian form. We can conclude that

[
z[m]
x[m]

]
∼ N

([
0
µ

]
,Σ

)
,

where Σ =
[
I+λTΦ−1λ −λTΦ−1

−Φ−1λ Φ−1

]−1
=

[
I λT

λ Φ+λλT

]
. Thus the conditional distribution is a Gaussian,

(z[m]
∣∣x[m]) ∼ N (−λT (Φ + λλT )−1(x[m]− µ), I − λT (Φ + λλT )−1λ).

Here we use the fact that[
A11 A12

A21 A22

]−1

=

[
(A11 −A12A

−1
22 A21)

−1 −(A11 −A12A
−1
22 A21)

−1A12A
−1
22

−A−1
22 A21(A11 −A12A

−1
22 A21)

−1 A−1
22 +A−1

22 A21(A11 −A12A
−1
22 A21)

−1A12A
−1
22

]
. and the conditional distribution of Gaussian. For more detail, please refer to my note on Gaussian
distribution http://lovinglavigne.com/PGM/gauss.pdf

Now, in E-step, we compute Qm(z[m]) as

Qm(z[m]) = P (z[m]
∣∣x[m]; θ)

4.2 M-step

In M-step, we maximize g(θ) over the set of parameters. Thus we perform the optimization

maxθ

M∑
m=1

∫ +∞

−∞
Qm(z[m])log

P (x[m], z[m]; θ)

Qm(z[m])
dz[m]

= maxθ

M∑
m=1

∫ +∞

−∞
Qm(z[m])

[
logP (z[m]; θ) + logP (x[m]|z[m]; θ)− logQm(z[m])

]
dz[m]

= maxθ

M∑
m=1

∫ +∞

−∞
Qm(z[m])logP (x[m]|z[m]; θ)dz[m]

= maxθ

M∑
m=1

∫ +∞

−∞
Qm(z[m])

[
log

1

(2π)n1/2|Φ|1/2
− 1

2
(x[m]− λz[m]− µ)TΦ−1(x[m]− λz[m]− µ)

]
dz[m]
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• max over λ

∇λ =
M∑

m=1

∫ ∞

−∞
Qm(z[m])Φ−1(x[m]− λz[m]− µ)z[m]Tdz[m]

=
M∑

m=1

∫ ∞

−∞
Qm(z[m])Φ−1(x[m]− µ)z[m]Tdz[m]−

M∑
m=1

∫ ∞

−∞
Qm(z[m])Φ−1λz[m]z[m]Tdz[m]

=

M∑
m=1

Φ−1(x[m]− µ)

∫ ∞

−∞
Qm(z[m])z[m]Tdz[m]−

M∑
m=1

Φ−1λ

∫ ∞

−∞
Qm(z[m])z[m]z[m]Tdz[m]

= Φ−1
M∑

m=1

(x[m]− µ)EZ[m]∼Qm

[
Z[m]

]T − Φ−1λ

M∑
m=1

EZ[m]∼Qm

[
Z[m]Z[m]T

]
:= 0

λ =

( M∑
m=1

(x[m]− µ)EZ[m]∼Qm

[
Z[m]

]T)( M∑
m=1

EZ[m]∼Qm

[
Z[m]Z[m]T

])−1

(4.2.1)

Notice that
∑M

m=1EZ[m]∼Qm

[
Z[m]Z[m]T

]
is the sum of covariance matrices of gaussian dis-

tributions, thus is the sum of positive definite matrices and invertible.

• max over µ

∇µ =
M∑

m=1

∫ ∞

−∞
Qm(z[m])Φ−1(x[m]− λz[m]− µ)dz[m]

= Φ−1
M∑

m=1

∫ ∞

−∞
Qm(z[m])(x[m]− µ)dz[m]− Φ−1λ

M∑
m=1

∫ ∞

−∞
Qm(z[m])z[m]dz[m]

= Φ−1
M∑

m=1

(x[m]− µ) + Φ−1λ
M∑

m=1

λT (Φ + λλT )−1(x[m]− µ)

= Φ−1(I + λλT (Φ + λλT )−1)
M∑

m−1

(x[m]− µ)

:= 0

µ =
x[m]

M

Note that µ does not depend on the values of parameters.

• max over Φ

maxΦ

M∑
m=1

∫ +∞

−∞
Qm(z[m])

[
log

1

(2π)n1/2|Φ|1/2
− 1

2
(x[m]− λz[m]− µ)TΦ−1(x[m]− λz[m]− µ)

]
dz[m]

=maxΦ

M∑
m=1

∫ +∞

−∞
Qm(z[m])

[
− 1

2
logdet(Φ)− 1

2
(x[m]− λz[m]− µ)TΦ−1(x[m]− λz[m]− µ)

]
dz[m]

=minΦ

M∑
m=1

∫ +∞

−∞
Qm(z[m])

[
logdet(Φ) + tr

(
Φ−1, (x[m]− λz[m]− µ)(x[m]− λz[m]− µ)T

)]
dz[m]
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Let J = Φ−1, the optimization problem becomes

minJ

M∑
m=1

∫ +∞

−∞
Qm(z[m])

[
− logdet(J) + tr

(
J, (x[m]− λz[m]− µ)(x[m]− λz[m]− µ)T

)]
dz[m]

∇J =
M∑

m=1

∫ +∞

−∞
Qm(z[m])

[
− J−1 + (x[m]− λz[m]− µ)(x[m]− λz[m]− µ)T

]
dz[m]

=
M∑

m=1

−J−1 +
M∑

m=1

∫ +∞

−∞
Qm(z[m])(x[m]− λz[m]− µ)(x[m]− λz[m]− µ)Tdz[m]

= −MJ−1

+

M∑
m=1

∫ +∞

−∞
Qm(z[m])

[
λz[m]z[m]TλT − 2λz[m](x[m]− µ)T + (x[m]− µ)(x[m]− µ)T

]
dz[m]

= −MJ−1

+
M∑

m=1

λEZ[m]∼Qm
[Z[m]Z[m]T ]− 2λEZ[m]∼Qm

[Z[m]](x[m]− µ) + (x[m]− µ)(x[m]− µ)T := 0

Φ = J−1 =
1

M

M∑
m=1

λEZ[m]∼Qm
[Z[m]Z[m]T ]− 2λEZ[m]∼Qm

[Z[m]](x[m]− µ) + (x[m]− µ)(x[m]− µ)T

Note that in the derivation of M-step, EZ[m]∼Qm
[Z[m]] and EZ[m]∼Qm

[Z[m]Z[m]T ] are the ex-
pectation and covariance matrix of the conditional Gaussian distribution (z[m]

∣∣x[m]) ∼ N (−λT (Φ+
λλT )−1(x[m] − µ), I − λT (Φ + λλT )−1λ). Thus EZ[m]∼Qm

[Z[m]] = −λT (Φ + λλT )−1(x[m] − µ),
EZ[m]∼Qm

[Z[m]Z[m]T ] = I − λT (Φ + λλT )−1λ
Now we can conclude the EM algorithm for factor analysis model

Algorithm 2: Algorithms for solving mixture of Gaussian
µ(t+1) = x[m]

M
for t = 0,1,...,until convergence do

E-step:

EZ[m]∼Qm
[Z[m]] = −λ(t)T (Φ(t) + λ(t)λ(t)T )−1(x[m]− µ)

EZ[m]∼Qm
[Z[m]Z[m]T ] = I − λ(t)T (Φ(t) + λ(t)λ(t)T )−1λ(t)

M-step:

λ(t+1) =
( M∑
m=1

(x[m]− µt)EZ[m]∼Qm

[
Z[m]

]T )( M∑
m=1

EZ[m]∼Qm

[
Z[m]Z[m]T

])−1

Φ(t+1) =
1

M

M∑
m=1

λEZ[m]∼Qm
[Z[m]Z[m]T ]− 2λEZ[m]∼Qm

[Z[m]](x[m]− µ)

+ (x[m]− µ)(x[m]− µ)T

if convergence then
return µ, λ(t+1), Φ(t+1)

end
end
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5 EM for Bayesian Network
Having the theoretical foundation for EM algorithm and having derived the EM algorithm for two
specific bayesian network, in this section we apply EM algorithm to general bayesian networks to
learn from partially observed data.

Suppose that we have a set of observed data D = {(o[m], Z[m])∀m = 1, ...,M} where o[m]
are instantiation of observed values in the mth data and Z[m] are unobserved random variables
in the mth data. For any z[m] ∈ val(Z[m]), (o[m], z[m]) is a full instantiation. And use the
notation (x[m], o[m]) < Xi > to indicate the value of random variable Xi in the full instantiation
(o[m], z[m]). And let θ be the variables for CPDs in the bayesian network, and θX|u be the
parameter for the CPD P (X|U = u) where U are the parents of X in the Bayesian network.

We can write the log-likelihood of the bayesian network as

l(θ;D) =
M∑

m=1

logP (o[m]; θ)

=
M∑

m=1

log
∑

z[m]∈val(Z[m])

P (o[m], z[m]; θ)

=
M∑

m=1

log
∑

z[m]∈val(Z[m])

Qm(z[m])
P (o[m], z[m]; θ)

Qm(z[m])

=
M∑

m=1

∑
z[m]∈val(Z[m])

Qm(z[m])log
P (o[m], z[m]; θ)

Qm(z[m])

=
M∑

m=1

∑
z[m]∈val(Z[m])

Qm(z[m])

[ ∑
(U→X)∈G

logP ((o[m], z[m]) < X >
∣∣(o[m], z[m]) < U >)− logQm(z[m])

]
= g(θ)

In E-step, we compute Qm(z[m]) = P (z[m]|o[m]; θ).

5.1 M-step

In M-step, we maximize the likelihood of the dataset on the bayesian network. g(θ) is the sum of
log functions over parameters of different CPDs, Thus we can decompose g(θ) into functions into
parameters for each CPD.

For each X in the scope of Bayesian network G and for each u ∈ val(Parent(X)), we solve the
optimization problem.

Find θx|u∀x ∈ val(X)

min−
M∑

m=1

∑
z[m]

Qm(z[m])logP ((o[m], z[m]) < X >
∣∣(o[m], z[m]) < U >)

s.t.
∑

x∈val(X)

θx|u = 1 (dual variable v)
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We solve this optimization problem with Lagrangian multiplier.

L(θX|u, v) = −
M∑

m=1

∑
z[m]

Qm(z[m])logP ((o[m], z[m]) < X >
∣∣(o[m], z[m]) < U >) + v(

∑
x

θx|u − 1)

= −
∑

x∈val(X)

logθx|u

M∑
m=1

∑
z[m]

Qm(z[m])1{o[m], z[m]) < X,U >= (x, u)}+ v(
∑
x

θx|u − 1)

∇θx|uL = − 1

θx|u

M∑
m=1

∑
z[m]

Qm(z[m])1{o[m], z[m]) < X,U >= (x, u)}+ v := 0

θx|u =
1

v

M∑
m=1

∑
z[m]

Qm(z[m])1{o[m], z[m]) < X,U >= (x, u)}

Let h(x, v) =
∑M

m=1

∑
z[m]Qm(z[m])1

{
o[m], z[m]) < X,U >= (x, u)

}
, then θx|u = 1

vh(x, u). The
dual function is

g(v) = inf
θX|u

L(θX|u, v)

= −
∑
x

log(
h(x, u)

v
)h(x, u) + v(

∑
x

h(x, u)

v
− 1)

= −
∑
x

log(
h(x, u)

v
)h(x, u) +

∑
x

h(x, u)− v

∇vg =
1

v

∑
x

h(x, u)− 1 := 0

v∗ =
∑
x

h(x, u)

Then the solution for the optimization problem is

θx|u =
h(x, u)∑
x h(x, u)

=

∑M
m=1

∑
z[m]Qm(z[m])1

{
(o[m], z[m]) < X,U >= (x, u)

}∑
x

∑M
m=1

∑
z[m]Qm(z[m])1

{
(o[m], z[m]) < X,U >= (x, u)

}
=

∑M
m=1

∑
z[m] P (z[m]|o[m]; θ)1

{
(o[m], z[m]) < X,U >= (x, u)

}∑
x

∑M
m=1

∑
z[m] P (z[m]|o[m]; θ)1

{
(o[m], z[m]) < X,U >= (x, u)

}
=

∑M
m=1 P (x, u

∣∣o[m])∑
x

∑M
m=1 P (x, u

∣∣o[m])

We can see that we do not have to explicitly compute Qm(z[m]), instead, we only have to compute
P (x, u

∣∣o[m])∀(U → X) ∈ G, ∀(x, u) ∈ val(X,U), which can be done with standard inference
techniques for bayesian networks, for example, belief propagation and Gibbs sampling. Algorithm
3 and 4 describe the method to apply EM algorithm to Bayesian network.
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Algorithm 3: Compute-Marginal-Q
Input: G: Bayesian network, θ:current parameter, D:partially observed data
for (U → X) ∈ G do

for (x, u) ∈ val(X,U) do
Q(x,u) = 0;

end
end
for m=1,...,M do

Run inference on G with evidence o[m]
for (U → X) ∈ G do

for (x, u) ∈ val(X,U) do
Q(x,u) += P(x,u

∣∣ o[m])
end

end
end
return Q

Algorithm 4: EM-Bayesian-Network
Input: G: Bayesian network, θ(0):initial parameter, D:partially observed data
for t = 0,1,... until convergence do

Q = Compute-Marginal-Q(G, θ(t), D)
for (U → X) ∈ G do

for (x, u) ∈ val(X,U) do
θ
(t+1)
x|u = Q(x,u)∑

x Q(x,u)

end
end

end
return θ(t)

Till now, hopefully I have made the derivation of EM algorithm clear to you. Thank you for
reading this!
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6 Appendix A: Log-determinant

6.1 Concavity of Logdet

We use the concavity of the line restriction to prove the concavity of lodget(X) for positive definite
X. The line restriction is

logdet(X + α∆X) = logdet

(
X1/2(I + αX−1/2∆XX−1/2)X1/2

)
= logdet(X) + logdet(I + αX−1/2∆XX−1/2)

= loget(X) + logdet(I + αUΛUT )

= logdet(X) +
∑
i

log(1 + αλi)

Here we perform eigenvalue decomposition, so that X−1/2∆XX−1/2 = UΛUT and λi is the
ith diagonal element of Λ (i.e the ith eigenvalue of X−1/2∆XX−1/2). Since the line restriction
logdet(X + α∆X) is concave in α, logdet is a concave function on positive definite space.

6.2 Derivative of Log-determinant

We continue the discussion from the previous section

logdet(X +∆X) = logdet(X) +
∑
i

log(1 + λi)

≃ logdet(X) +
∑
i

λi

= logdet(X) + tr(X−1/2∆XX−1/2)

= logdet(X) + tr(X−1,∆X)

Thus ∇X logdet(X) = X−1. At the "approximately equal sign" we used the fact that limλi→0 log(1+
λi) = λi.
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