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In this note, I want to clarify the derivation of the optimization algorithm for solving the low-rank matrix
completion problem. Though it’s a note on low-rank matrix completion, I’m not going to discuss about the
motivation since it’s well discussed in a lot of blogs. The main focus of this note is the logic of deriving the
optimization algorithm from general convex optimization theory.

1 Singular Value Shrinkage
I have discussed about singular value shrinkage in a previous note, but I think I can make a better

explanation this time.
Consider the following optimization problem

minX τ ||X||∗ +
1

2
||X − Y ||2F (1.1)

where ||X||∗ is the nuclear norm(the sum of all singular values) of X. (1.1) has a close-form solution

X = Dτ (Y ) (1.2)

where Dτ (·) is the singular value shrinkage operator.
If Y is a diagonal matrix, then the singular value shrinkage operator is defined as

Dτ (Y )ii = max(Yii − τ, 0) (1.3)

If Y is not diagonal, then the singular value shrinkage operator is defined as

Dτ (Y )ii = UDτ (Σ)V
T (1.4)

where Y = UΣV T is the singular value decomposition of Y .
To see why X = Dτ (Y ) solves (1.1), let’s see the singular value decomposition of Y . The singular value

decomposition of Y can be written as Y = U0Σ0V
T
0 + U1Σ1V

T
1 where the diagonal elements diag(Σ0) > τ

and diag(Σ1) ≤ τ . The SVD of Y is shown as the following picture.

Figure 1: SVD of Y
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The τ -singular value shrinkage of Y is

Dτ (Y ) = U0(Σ0 − τI)V T
0 (1.5)

and Y −Dτ (Y ) = τU0V
T
0 + U1Σ1V

T
1 = τ(U0V

T
0 + U1Σ1/τV

T
1 ).

When X = Dτ (Y ) = U0(Σ0− τI)V T
0 +U1diag(⃗0)V T

1 , notice that diagonal elements of Σ0− τI is positive.
the subdifferential of nuclear norm at X is defined as

∂||X||∗ = {U0V
T
0 + U1diag(σ)V T

1 | − 1 ≤ σi ≤ 1} (1.6)

We can see that

Y −Dτ (Y ) = Y −X = τU0V
T
0 + U1Σ1V

T
1 ∈ τ∂||X||∗ (1.7)

Thus 0⃗ ∈ X − Y + τ∂||X||∗ and X = Dτ (Y ) solves (1.1).
When you think about the subdifferential of ||X||∗, since the nuclear norm is the one norm of the singular

values of X, the subdifferential of ||X||∗ is just like the subdifferential of one norm of the singular values of
X.

Suppose X has n1 nonzero singular values and n2 zero singular values, its SVD can be written as

X = U0Σ0V
T
0 + U1Σ1V

T
1 (1.8)

where diagonal elements of Σ0 are nonzero and diagonal elements of Σ1 are zero.
The subgradient of one norm is defined as

(∂||x||1)i =


1 x > 0

−1 x < 0

[−1, 1] x = 0

Similarly, singular vectors corresponding to nonzero singular values Σ0 contribute U0IV
T
0 to the subgradi-

ent and singular vectors corresponding to zero singular values Σ1 contribute U1diag(σ)V T
0 to the subgradient

where −1 ≤ σi ≤ 1.
To make it more clear, the subdifferential of nuclear norm at X = UΣV T is defined as ∂||X||∗ =

Udiag(∂||σ||1)V T .
For the detail of subdifferential of matrix norm, please refer to my note http://lovinglavigne.com/

matnorm/MatNormSubdiff.pdf

2 Low Rank Matrix Completion Problem
The low-rank matrix completion problem of formulated as

minX . rank(X)

s.t. Xi,j = Mi,j ∀(i, j) ∈ Ω (2.1)

Since minimizing the rank is NP hard, instead of minimizing the rank, we can minimize the nuclear
norm, the convex envelop of rank(·). The intuition is, minimizing the one norm of singular values yields
sparsity of singular values and if there are many zero singular values, the matrix is low-rank.

So we can approximately solve (2.1) by solving the convex relaxation

minX . ||X||∗
s.t. PΩ(X) = PΩ(M) (2.2)

where PΩ(·) is the projection on indices in Ω.
Consider the following optimization problem

minX . τ ||X||∗ +
1

2
||X||2F

s.t. PΩ(X) = PΩ(M) (2.3)

If the τ is big enough, then solving (2.3) approximately solves (2.2). Thus, if we want to solve the low-rank
matrix completion problem, we can just solve (2.3) with a big enough τ .
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3 Lagrangian Multiplier and Gradient Method for Dual
Consider the optimization problem we got

minX . f(X) = τ ||X||∗ +
1

2
||X||2F

s.t. PΩ(X) = PΩ(M) (3.1)

the lagrangian is
L(X,Y ) = τ ||X||∗ +

1

2
||X||2F+ < Y,PΩ(X −M) > (3.2)

and the dual function is

g(Y ) = inf
X

L(X,Y )

= inf
X
{τ ||X||∗ +

1

2
||X||2F+ < Y,PΩ(X −M) >}

≤ inf
PΩ(X)=PΩ(M)

{τ ||X||∗ +
1

2
||X||2F+ < Y,PΩ(X −M) >}

= inf
PΩ(X)=PΩ(M)

{τ ||X||∗ +
1

2
||X||2F }

= p∗ (3.3)

which is always a lower bound for p∗.
The optimization minX .τ ||X||∗ + 1

2 ||X||2F+ < Y,PΩ(X −M) > is equivalent to minX .τ ||X||∗ + 1
2 ||X −

PΩ(Y )||2F and the close-form solution is given by X = Dτ (Y ). Thus the dual function can be written as

g(Y ) = τ ||X̂||∗ +
1

2
||X̂||2F+ < Y,PΩ(X̂ −M) > (3.4)

Since problem (3.1) is convex and (strictly) feasible, the strong duality holds. that is

f(X∗) = g(Y ∗)

= inf
X

L(X,Y ∗)

= inf
X
{f(X)+ < Y ∗, PΩ(X −M) >}

≤ f(X∗)+ < Y ∗, PΩ(X
∗ −M) >

= f(X∗) (3.5)

and we get f(X∗) ≤ f(X∗), so all inequalities holds with equalities.
We can solve the primal problem by solving the dual problem

maxY . g(Y ) = τ ||X̂||∗ +
1

2
||X̂||2F+ < Y,PΩ(X̂ −M) > (3.6)

since the dual function is linear, thus very simple, in Y , we can solve easily solve the dual problem with
gradient ascent.

At each step, we calculate the gradient of g(Y ) at Y

∂Y g(Y ) = PΩ(X̂ −M) (3.7)

where
X̂ = argminXL(X,Y ) (3.8)

and apply gradient ascent. Thus the updating rule can be describe as
X̂ = Dτ (Y )

∂Y g(Y ) = PΩ(X̂ −M)

Y := Y + α∂Y g(Y )
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where α is the step size for gradient ascent.
Once we have the updating rule, what we need is a stopping criterion. First, we can produce a upper

bound of p∗(denoting the optimal value of (3.1) as p∗) by plugging a feasible X in to f(X). At each step,
once we calculated X̂ = Dτ (Y ), we can produce a feasible X by

Xij =

{
X̂ij (i, j) /∈ Ω

Mij (i, j) ∈ Ω
(3.9)

and we can produce a upper bound for p∗ by calculating f(X).
Other than a upper bound of p∗, we need a lower bound of p∗ which we can get from evaluating the dual

function at the current dual variable Y

g(Y ) = inf
X

L(X,Y )

= L(Dτ (Y ), Y )

Since we have a upper bound and a lower bound of p∗, once these two bounds meet with each other, we
get the optimal value in a range of error. The complete algorithm for solving (3.1) can be described as

Algorithm 1: Solving (3.1)
Input:τ,M, ϵ ;
Initialization: Dual variable Y=0;
while True do

Calculate X̂ = Dτ (Y ) ;
Calculate the gradient ∂Y g(Y ) = PΩ(X̂ −M) ;
Apply gradient ascent Y := Y + α∂Y g(Y ) ;
Produce a feasible point X by (3.9) ;
Calculate a upper bound u = τ ||X||∗ + 1

2 ||X||2F ;
Calculate a lower bound l = L(Dτ (Y ), Y ) ;
if u− l ≤ epsilon then

return X;
else

pass ;
end

end

The following figure shows the optimization progress of a problem of size 30x30 with 50% of its entries
fixed.

Figure 2: An example of size 30x30 with 50% of its entries
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4 Compared with A Simple Problem
The optimization algorithm for solving the low-rank matrix completion problem is nothing more than a
gradient method on the dual problem and is very easy to understand. One thing I found when I was learning
things is that when things get complicated, you get lost in the intricate derivations of formulas and lose the
big picture. Thus I want to compare the low-rank matrix completion problem to a very simple quadratic
programming over a unit box to show you the "big picture" of how the optimization algorithm is derived.

Low-rank matrix completion Quadratic programming over unit box
The optimization problem is

minX . f(X) = τ ||X||∗ +
1

2
||X||2F

s.t. PΩ(X) = PΩ(M)

The lagrangian is

L(X,Y ) = τ ||X||∗ +
1

2
||X||2F

+ < Y,PΩ(X)− PΩ(M) >

Calculate the X that minimizes the lagrangian at Y
by singular value shrinkage

X = Dτ (Y ) = argminXL(X,Y )

The dual function is

g(Y ) = inf
X

L(X,Y )

= τ ||X̂||∗ +
1

2
||X̂||2F

+ < Y,PΩ(X̂)− PΩ(M) >

where X̂ = Dτ (Y )
Calculate the gradient of dual function w.r.t Y .

∂Y g(Y ) = PΩ(X̂ −M)

The updating rule is
X̂ = Dτ (Y )

∂Y g(Y ) = PΩ(X̂ −M)

Y := Y + α∂Y g(Y )

Produce a feasible point

Xij =

{
X̂ij (i, j) /∈ Ω

Mij (i, j) ∈ Ω

Produce a upper bound by evaluating the objective
u = f(X) and a lower bound by evaluating the dual
function l = L(Dτ (Y ), Y ).

The optimization problem is

minx. f(x) =
1

2
xTPx+ qTx (P ≥S++ 0)

s.t. x2i ≤ 1

The lagrangian is

L(x, λ) = 1

2
xTPx+ qTx

+ xTdiag(λ)x− 1Tλ

Calculate the X that minimizes the lagrangian at λ
by setting gradient to zero.

x = [P + 2diag(λ)]−1q = argminxL(x, λ)

The dual function is

g(Y ) = inf
x
L(x, λ)

=
1

2
x̂TPx̂+ qT x̂

+ x̂Tdiag(λ)x̂− 1Tλ

where x̂ = [P + 2diag(λ)]−1q.
Calculate the gradient of dual function w.r.t λ

∂λi
g(λ) = x̂2i − 1

The updating rule is
x̂ = [P + 2diag(λ)]−1q

∂λi
g(λ) = x̂2i − 1

λi := max(λi + α∂λi
g(λ), 0)

Produce a feasible point

xi = min(xi, 1)
xi = max(xi,−1)

Produce a upper bound by evaluating the objective
u = f(x) and a lower bound by evaluating the dual
function l = L([P + 2diag(λ)]−1q, λ).

As you can see, the left part is a gradient method on dual and the right part is a projected gradient
method on dual since λ’s should be positive or zero in dual problem. They are basicly the same.
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