Gershgorin's Theorem

A $\in C^{n_{1}n}$, let $D_{i} = \{z \in C \mid |z - a_{i}| \leq \sum_{j \neq i} |a_{ij}|\}$ then all eigenvalue of A lie in $\bigcup_{j \neq i} D_{i}$

Diagonally-Dominant Matrix

A & C *** A is (Strictly) diagonally-dominant if 10111 = Z 10131 + i

Theorem

A Stricty diagonally - diagonal matrix is nonsingular

$$D_{7} = \underbrace{\underbrace{Z \in C}_{i=1}^{n} |Z - a_{i:1}| \leq \underbrace{\underbrace{Z}_{i}}_{i=1}, |a_{i:j}| \underbrace{i}_{i=1}^{n} |A_{i:j}| \underbrace{Z}_{i=1}^{n} |A_{i:j}| \underbrace{Z}_{i=1}^{n}$$

Theorem

A symmetric diagonally-dominant real matrix with non-neg diagonals is PSD

A is symmetric real $\rightarrow \lambda$ is real D: = $\{z \in \mathbb{R} \mid | z - a; : | \leq \frac{1}{2^{r}}, |a_{ij}| \}$ Suppose $\lambda \in D_{k}$ $|\lambda - \Omega_{kk}| \leq \frac{1}{24k} |\alpha_{kj}|$ $\forall \lambda < o |\lambda - \Omega_{kk}| = \Omega_{kk} - \lambda \leq \frac{1}{24k} |\alpha_{kj}|$

then 入 > arr - 萊 lay 1 >0 Contradice that XLO

Theorem

If A is strictly dispully-dominant with positive diagonal duments then the real part of its eigenvalues are positive $|\lambda - \alpha_{kk}| = |\chi + \gamma_i - \alpha_{kk}| \leq \frac{2}{j + k} |\alpha_{kj}|$ |X-axx| < Fr | arg | if NED W-and = are - X & ZHR lakyl X》Alle - 聶lang1>0 Contradict that 750 1,1 >0