
EE364b Prof. M. Pilanci

EE364b Spring 2020 Homework 5

Due Friday 5/15 at 11:59pm via Gradescope

4.1 (4 points) Maximum volume ellipsoid vs Chebyshev center method. Consider the convex
set

C = {x | Ax � b} ,

where A 2 R
n⇥d and b 2 R

d. The data files Amatrix and bvector are available on
Canvas.

(a) (2 points) Find the center of the maximum volume ellipsoid in C and the center
of the largest Euclidean ball in C. You may use CVX/CVXPY. Hint: See 364a

slides for calculating the maximum volume ellipsoid.

(b) (2 points) Denote the two centers (vectors in R
d) in part (a) by xellipsoid and

xball respectively. Let g 2 R
d be the all-ones vector. We will consider the cuts

gT (x� xball) � 0 and gT (x� xellipsoid) � 0. Estimate the volume ratios

Rellipsoid :=
vol({gT (x� xellipsoid) � 0)} \ C)

vol(C)
,

and

Rball :=
vol({gT (x� xball) � 0)} \ C)

vol(C)
,

by generatingM = 106 i.i.d. uniformly distributed random vectors in [�0.5,+0.5]d

(i.e., x = rand(d,1)-0.5 for M trials). Hint: Let MC be number of random vec-
tors that satisfy Ax � b. Let Mellipsoid be the number of random vectors that
satisfy Ax � b and gT (x � xellipsoid) � 0. Similarly, let Mball be the number of
random vectors that satisfy Ax � b and gT (x� xball) � 0. The volume ratios can
be estimated by

Rellipsoid ⇡
Mellipsoid

MC
,

and

Rball ⇡
Mball

MC
.
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4.2 (5 points) Kelley’s cutting-plane algorithm. We consider the problem of minimizing a
convex function f : Rn

! R over some convex set C, assuming we can evaluate f(x)
and find a subgradient g 2 @f(x) for any x. Suppose we have evaluated the function
and a subgradient at x(1), . . . , x(k). We can form the piecewise-linear approximation

f̂ (k)(x) = max
i=1,...,k

�
f(x(i)) + g(i)T (x� x(i))

�
,

which satisfies f̂ (k)(x)  f(x) for all x. It follows that

L(k) = inf
x2C

f̂ (k)(x)  p?,

where p? = infx2C f(x). Since f̂ (k+1)(x) � f̂ (k)(x) for all x, we have L(k+1)
� L(k).

In Kelley’s cutting-plane algorithm, we set x(k+1) to be any point that minimizes f̂ (k)

over x 2 C. The algorithm can be terminated when U (k)
� L(k)

 ✏, where U (k) =
mini=1,...,k f(x(i)).

(a) (3 points) Use Kelley’s cutting-plane algorithm to minimize the piecewise-linear
function

f(x) = max
i=1,...,m

(aTi x+ bi)

that we have used for other numerical examples, with C the unit cube, i.e.,
C = {x | kxk1  1}. Generate the same data we used before using

n = 20; % number of variables
m = 100; % number of terms
randn(’state’,1);
A = randn(m,n);
b = randn(m,1);

You can start with x(1) = 0 and run the algorithm for 40 iterations. Plot f(x(k)),
U (k), L(k) and the constant p? (on the same plot) versus k.

(b) (2 points) Repeat for f(x) = kx� ck2, where c is chosen from a uniform distribu-
tion over the unit cube C. (The solution to this problem is, of course, x? = c.)

4.3 (5 points) Ellipsoid method for an SDP. We consider the SDP

maximize 1
Tx

subject to x ⌫ 0 , ⌃� diag(x) ⌫ 0 ,

with variable x 2 R
n and data ⌃ 2 S

n
++. The first inequality is a vector (component-

wise) inequality, and the second inequality is a matrix inequality.
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(a) (3 points) Explain how to use the ellipsoid method to solve this problem. De-
scribe your choice of initial ellipsoid and how you determine a subgradient for the
objective (expressed as �1

Tx, which is to be minimized) or constraint functions
(expressed as maxi(�xi)  0 and �max(diag(x) � ⌃)  0). You can describe a
basic ellipsoid method; you do not need to use a deep-cup method or work in the
epigraph.

(b) (2 points) Try out your ellipsoid method on some randomly generated data with
n  20. Use a stopping criterion that guarantees 1% accuracy. Compare the
result of the solution found using CVX. Plot the upper and lower bounds from
the ellipsoid method, versus iteration number.

4.4 (Extra credit, 6 points) Minimum volume ellipsoid covering a half-ellipsoid. In this
problem we derive the update formulas used in the ellipsoid method, i.e., we will
determine the minimum volume ellipsoid that contains the intersection of the ellipsoid

E = {x 2 R
n
| (x� xc)

TP�1(x� xc)  1}

and the halfspace
H = {x | gT (x� xc)  0}.

We’ll assume that n > 1, since for n = 1 the problem is easy.

(a) (2 points) We first consider a special case: E is the unit ball centered at the origin
(P = I, xc = 0), and g = �e1 (e1 is the first unit vector), so E \H = {x | xTx 

1, x1 � 0}.

Let
Ẽ = {x | (x� x̃c)

T P̃�1(x� x̃c)  1}

denote the minimum volume ellipsoid containing E \H. Since E \H is symmetric
about the line through first unit vector e1, it is clear (and not too hard to show)
that Ẽ will have the same symmetry. This means that the matrix P̃ is diagonal,
of the form P̃ = diag(↵, �, �, . . . , �), and that x̃c = �e1 (where ↵, � > 0 and
� � 0).

So now we have only three variables to determine: ↵, �, and �. Express the
volume of Ẽ in terms of these variables, and also the constraint that Ẽ ◆ E \H.
Then solve the optimization problem directly, to show that

↵ =
n2

(n+ 1)2
, � =

n2

n2 � 1
, � =

1

n+ 1

(which agrees with the formulas we gave, for this special case).

Hint. To express E \H ✓ Ẽ in terms of the variables, it is necessary and su�cient
for the conditions on ↵, �, and � to hold on the boundary of E \H, i.e., at the
points

x1 = 0, x2
2 + · · ·+ x2

n  1,
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or the points
x1 � 0, x2

1 + x2
2 + · · ·+ x2

n = 1.

(b) (2 points) Now consider the general case, stated at the beginning of this problem.
Show how to reduce the general case to the special case solved in part (a).

Hint. Find an a�ne transformation that maps the original ellipsoid to the unit
ball, and g to �e1. Explain why minimizing the volume in these transformed
coordinates also minimizes the volume in the original coordinates.

(c) (2 points) Finally, show that the volume of the ellipse Ẽ satisfies vol(Ẽ) 

e�
1
2n vol(E).

Hint. Compute the volume of the ellipse E as a function of the eigenvalues of P ,
then use the results of parts (a) and (b) to argue that the volume computation
can be reduced to the special case in part (a).
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