
EE364b Prof. M. Pilanci

EE364b Spring 2020 Homework 2

Due Friday 4/24 at 11:59pm via Gradescope

2.1 (8 points, 1 point per question) Let f be a convex function with domain in R
n. We

fix x 2 int dom f and d 2 R
n. Recall the definition of the directional derivative of f

at x along the direction d

f 0(x, d) = lim
t # 0

f(x+ td)� f(x)

t
.

In this question, we aim to show that f 0(x, d) exists and is finite, and that we have the
following relationship between @f(x) and f 0(x, d),

f 0(x, d) = sup
g2@f(x)

gTd .

(a) Show that the ratio f(x+td)�f(x)
t is a non-decreasing function of t > 0. Deduce

that f 0(x, d) exists, and is either finite or equal to �1.

We know from the lectures that, since x 2 int dom f , the subdi↵erential set @f(x) is
non-empty, convex and compact.

(b) Let g 2 @f(x). Show that f 0(x, d) � gTd. Deduce that f 0(x, d) is finite and that
f 0(x, d) � supg2@f(x) g

Td.

In the remaining part of this question, we will establish the converse inequality f 0(x, d) 
supg2@f(x) g

Td, by showing the existence of a subgradient g⇤ 2 @f(x) such that f 0(x, d) 
g⇤Td. We introduce the two following sets

C1 = {(z, t) | z 2 dom f, f(z) < t}
C2 = {(y, v) | y = x+ ↵d, v = f(x) + ↵f 0(x, d), ↵ � 0} .

(c) Prove that C1 and C2 are non-empty, convex and disjoint.

(d) Justify why there exists a nonzero vector (a, �) 2 R
n ⇥R such that

aT (x+ ↵d) + �(f(x) + ↵f 0(x, d))  aT z + �w , (1)

for all ↵ � 0, z 2 dom f and f(z) < w.

(e) Prove that � must be strictly positive. Define ã = a
� . Show that

ãT (x+ ↵d) + f(x) + ↵f 0(x, d)  ãT z + w (2)

for all ↵ � 0, z 2 dom f and f(z) < w.
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(f) Prove that �ã 2 @f(x).

(g) Prove that �ãTd � f 0(x, d).

We illustrate the above result with an example.

(h) Let A 2 R
m⇥n, b 2 R

m, � > 0, and fix a direction d 2 R
n. Consider the function

f(x) = 1
2kAx�bk22+�kxk1. Compute f 0(0, d). Remark: you can either compute it

directly by using the definition of the directional derivative, or, use the variational
formula f 0(0, d) = supg2@f(0) g

Td.

2.2 (4 Points) In this question, we will show that a subgradient of the function h(x) =
minz2C kx� zk2 is

g =
x� z⇤

kx� z⇤k2
,

where C is a compact convex set in R
n, x is a given point in R

n which does not belong
to C and z⇤ = PC(x) := argminz2C kx�zk2 denotes the Euclidean projection of x onto
C (which exists and is unique).

(a) (0.5 point) Use the fact that kx � zk2 = maxu:kuk21 uT (x � z) to transform the
minimization problem h(x) = minz2C kx � zk2 into the following saddle point
problem

min
z2C

max
u:kuk21

uT (x� z) .

(b) (2 points) Now, we will use (a simple version of) the Sion’s minimax theorem,
which can be stated as follows.

Let X ✓ R
n and Y ✓ R

n be compact and convex sets. Let f be a real valued
function on X ⇥ Y such that

• f(x, ·) is continuous and concave on Y , 8x 2 X

• f(·, y) is continuous and convex on X, 8y 2 Y

Then, we have

min
x2X

max
y2Y

f(x, y) = max
y2Y

min
x2X

f(x, y) .

Further, there exists a (saddle) point (x⇤, y⇤) 2 X ⇥ Y such that

f(x⇤, y⇤) = min
x2X

f(x, y⇤) = max
y2Y

f(x⇤, y) = min
x2X

max
y2Y

f(x, y) = max
y2Y

min
x2X

f(x, y) .

Apply Sion’s minimax theorem to conclude that

min
z2C

max
u:kuk21

uT (x� z) = max
u:kuk21

min
z2C

uT (x� z) .

Define u⇤ = x�z⇤

kx�z⇤k2 . Show that (z⇤, u⇤) is a saddle point of the above minimax
problem.
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(c) (1.5 points) Using the ’max-min’ representation of h(x), compute a subgradient
of h at x.

2.3 (4 points) For this question, you need to submit your code in addition to any description
of your algorithm. Let ⌃ be an n⇥n diagonal matrix with diagonal entries �1 � · · · �
�n > 0, and y a given vector in R

n. Consider the compact convex sets E = {z 2 R
n |

k⌃ 1
2 zk2  1} and B = {z 2 R

n | kz � yk1  1}.

(a) (2 points) Formulate an optimization problem and propose an algorithm in order
to find a point x 2 E \ B. You can assume that E \ B is not empty. Your
algorithm must be provably converging (although you do not need to prove it and
you can simply refer to the lectures’ slides).

(b) (2 points) Implement your algorithm with the following data: n = 2, y = (7/4, 0),
�1 = 1, �2 = 0.5 and x = (0, 4). Plot the objective value of your optimization
problem versus the number of iterations.

2.4 (4 points) Consider the optimization problem

minimize
n
f(x1, . . . , xJ) :=

1
2kb�

PJ
j=1 Ajxjk22 + � ·

PJ
j=1 kxjk2

o
,

with variable x1, . . . , xJ 2 R
n and problem data A1, . . . , AJ 2 R

m⇥n, b 2 R
m and

� > 0. We will apply the subgradient method.

(a) (2 points) Show that the subgradient method with Polyak’s step length updates
the current point to a point at which the first order (linear) approximation has
value f ⇤ (optimal value).

(b) (2 points) Let J = 15, n = 10, m = 200 and � = 1. Generate random matrices
A1, . . . , AJ 2 R

m⇥n with independent Gaussian entries with mean 0 and variance
1/m, and, random vectors x1, . . . , xJ 2 R

n with independent Gaussian with mean
0 and variance 1/n, then set b =

PJ
j=1 Axj. Plot convergence in terms of the

objective f(x(k)
1 , . . . , x(k)

J ). Try di↵erent step length schedules, including Polyak’s
step length.
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