EE364b Prof. M. Pilanci

EE364b Spring 2020 Homework 2
Due Friday 4/24 at 11:59pm via Gradescope

2.1 (8 points, 1 point per question) Let f be a convex function with domain in R". We
fix x € int dom f and d € R". Recall the definition of the directional derivative of f
at x along the direction d
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In this question, we aim to show that f’(z,d) exists and is finite, and that we have the
Wb estet following relationship between 0f(z) and f'(z,d),
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( f how that the ratio w is a non-decreasing function of ¢ > 0. Deduce
L that f'(x,d) exists, and is either finite or equal to —co.
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We know from the lectures that, since x € int ithe subdifferential set 0f(x) is
non-empty, convex and compact. b £l - = Jio ) A gL ey ge H

(b) Let g € Of(z). Show that f'(z,d) > g'd. Deduce that f’(z,d) is finite and that
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b IO SUDgeof(x) 9 Td, by showing the existence of a subgradient g* € df(x) such that f’'(z,d) <
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We illustrate the above result with an example. - ” abr ]

(h) Let Ae R™" be R™, XA >0, and fix a direction d € R". Consider the function
f(x) = |Az—b|I3+ A||z|l;. Compute f'(0,d). Remark: you can either compute it
directly by using the deﬁm’t@'on of the directional derivative, or, use the variational
formula f'(0,d) = supyeq o) 9" d.

2.2 (4 Points) In this question, we will show that a subgradient of the function h(x) =

min,cc ||z — z||2 is
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where C'is a compact convex set in R", x is a given point in R"™ which does not belong

to C and z* = Po(z) := argmin, . ||z — z||2 denotes the Euclidean projection of x onto
_ iy mex ((x2) C (which exists and is unique).
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(a) (0.5 point) Use the fact that ||z — z|s = maxyju,<1 u’ (x — 2) to transform the
minimization problem h(x) = min,cc ||z — z||2 into the following saddle point
problem

min max u’(z —2).
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y \Q@W _ " k-2) (b) (2 points) Now, we will use (a simple version of) the Sion’s minimax theorem,
' L poeme on U which can be stated as follows.
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function on X XY such that
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h R o f(&",y") = min f(z,y") = max f(s",y) = min max f(2, y) = maxmin f(z,y).
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u*) is a saddle point of the above minimax
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(c) (1.5 points) Using the 'max-min’ representation of h(z), compute a subgradient
of h at x.
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A 2.3 (4 points) For this question, you need to submit your code in addition to any description
et |3tal < of your algorithm. Let X be an n x ndiagenalmatrix with diagonal entries o7 > --- >
I ¥yla < o, > 0, and y a given vector in R". Consider the compact convex sets £ = {z € R" |
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s JWL/;?/ JJ you can simply refer to the lectures’ slides).
W, -4 <«
b TR (b) (2 points) Implement your algorithm with the following data: n =2, y = (7/4,0),
bi(+ *M‘“‘é‘s\ﬁ j’) @i{mf o1 =1, 00 =05 and x = (0,4). Plot the obiective value of your optimization
wl UM problem versus the number of iterations. =
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0)- QMW with variable z1,...,z; € R" and problem data A;,...,A; € R™", b € R™ and

A > 0. We will apply the subgradient method.
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- value f* (optimal value).
(b) (2 points) Let J = 15, n = 10, m = 200 and A\ = le=Generate-random-matrices
Aq,..., Ay € R™" with independent Gaussian entries with mean (0 and variance
1/m, and, random vectors w1, ..., x; € R" with independent Gaussian with mean

Orand-variance~ly/my then set b = Z‘.] Az;. Plot convergence in terms of the
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objective f (:L'gk), .. Try different step length schedules, including ‘Polyak’s

step length.



