
EE364b Prof. M. Pilanci

EE364b Spring 2020 Homework 1

Due Friday 4/17 at 11:59pm via Gradescope

1.1 (3 points) For each of the following convex functions, determine the subdi↵erential set

at the specified point.

(a) f(x1, x2, x3) = max{|x1|, |x2|, |x3|} at (x1, x2, x3) = (0, 0, 0).

(b) f(x) = e|x| at x = 0 (x is a scalar).

(c) f(x1, x2) = max{x1 + x2 � 1, x1 � x2 + 1} at (x1, x2) = (1, 1).

1.2 (7 points) For each of the following convex functions, explain how to calculate a sub-

gradient at a given x.

(a) f(x) = maxi=1,...,m(aTi x+ bi).

(b) f(x) = maxi=1,...,m |aTi x+ bi|.
(c) f(x) = maxi=1,...,m

�
� log

�
aTi x+ bi

��
. You may assume x is in the domain of f .

(d) f(x) = max0t1 p(t), where p(t) = x1 + x2t+ · · ·+ xntn�1
.

(e) f(x) = x[1] + · · ·+ x[k], where x[i] denotes the ith largest element of the vector x.

(f) f(x) = minAy�b kx � yk2, i.e., the square of the distance of x to the polyhedron

defined by Ay � b. You may assume that the inequalities Ay � b are strictly fea-

sible. (Hint: You may use duality, and then use subgradient the rule for pointwise
maximum)

(g) f(x) = maxAy�b yTx, i.e., the optimal value of an LP as a function of the cost

vector. (You can assume that the polyhedron defined by Ay � b is bounded.)

(Hint: You may use the subgradient rule for pointwise maximum)

1.3 (2 points) Convex functions that are not subdi↵erentiable. Verify that the following

functions, defined on the interval [0,1), are convex, but not subdi↵erentiable at x = 0.

(Hint: You can prove by contradiction, i.e., assuming that the subgradient condition
holds to reach a contradiction)

(a) f(0) = 1, and f(x) = 0 for x > 0.

(b) f(x) = �xp
for some p 2 (0, 1).

1.4 (6 points) Conjugacy, subgradients and Lp-norms. In the first part of this question, we

show how conjugate functions are related to subgradients. Let f : R
n ! R be convex

and recall that its conjugate is f ⇤
(v) = supx{vTx� f(x)}. Prove the following:

(a) For any v we have vTx  f(x)+f ⇤
(v) (this is sometimes called Young’s inequality).
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(b) We have gTx = f(x) + f ⇤
(g) if and only if g 2 @f(x).

Note that (you do not need to prove this) if f is closed, so that f(x) = f ⇤⇤
(x), result

(b) implies the duality relationship that g 2 @f(x) if and only if x 2 @f ⇤
(g) if and only

if gTx = f(x) + f ⇤
(g).

In the second part of this question, we apply the result (b) to characterize the sub-

di↵erentials of the function f(x) = kxkp = (
Pn

i=1 |xi|p)
1
p , where p � 1. We denote

q = p
p�1 if p > 1 and q = +1 if p = 1. Note that

1
p +

1
q = 1.

(c) Show that for any v we have f ⇤
(v) = Iq(v) where Iq(v) = 0 if kvkp  1 and

Iq(v) = +1 if kvkp > 1.

(d) Deduce from (b) and (c) that for any x and any g, we have g 2 @f(x) if and only

if gTx = kxkp and kgkq  1.

(e) Determine @f(0) for p = 1, 2,+1.

In the final part of this question, we extend the case p = 1 in the context of symmetric

matrices. Denote S the set of n ⇥ n real symmetric matrices. For X 2 S, recall the

definition of its nuclear norm kXk⇤ =
Pn

i=1 |�i(X)| where �1(X), . . . ,�n(X) are the

eigenvalues of X and its operator norm kXk = supi=1,...,n |�i(X)|.

(f) Consider f(X) = kXk⇤. Show that @f(0) = {Z 2 S | kZk  1}. Determine

@f(X) for an arbitrary X 2 S in terms of the eigenvalues and eigenvectors of X.

1.5 Optional (extra credit, 6 points). Non-convex non-di↵erentiable functions, Clarke sub-
di↵erentials and Neural Networks. Let f : R

n ! R be a given function that we do

not assume to be convex nor to be di↵erentiable (e.g., a deep neural network with

ReLU activation functions), so that the subdi↵erential @f(x) = {g 2 R
n | f(y) �

f(x) + g>(y � x) 8y} is possibly an empty set. In this question, we explore a more

general notion of subdi↵erentials, namely, Clarke subdi↵erentials, originally referred to

as generalized gradients [Cla75].

We make the following technical assumption: we assume that f is locally Lipschitz,

i.e., for any x 2 R
n
, there exists ⌘ > 0 and Lx > 0 such that |f(y)�f(z)|  Lxky�zk2

for any y, z such that kx � yk2, kx � zk2  ⌘. Then, it follows that the function f is

di↵erentiable almost everywhere with respect to the Lebesgue measure (this result is

sometimes referred to as Rademacher’s theorem [BL10]). We denote by D the subset

of R
n
where f is di↵erentiable. In other words, if we consider a bounded open set

B in R
n
and we pick x uniformly at random in B, then f is di↵erentiable at x with

probability equal to 1.

The Clarke subdi↵erential of f at x is defined as

@Cf(x) = Co

n
lim
k!1

rf(xk) | xk ! x, xk 2 D, lim
k!1

rf(xk) exists

o
.
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The goal of this exercise is to characterize some basic properties of Clarke subdi↵eren-

tials, relate @Cf(x) to @f(x) and study some implications of the condition 0 2 @Cf(x),
which is necessary and su�cient for global optimality in the convex case. Prove the

following:

(a) If f is a continuously di↵erentiable function then @Cf(x) = {rf(x)}.
(b) If f is convex then @Cf(x) ✓ @f(x). (Optional, no credit) Show that equality

actually holds, i.e., @Cf(x) = @f(x). Hint: Suppose by contradiction that there
exists g 2 @f(x) such that g 62 @Cf(x). Set h(x) = f(x) � gTx. Show that
0 2 @h(x) and 0 62 @Ch(x). Use the hyperplane separation theorem to conclude.

We say that x is Clarke stationary if 0 2 @Cf(x). If f is convex, then, from (b), we

know that x is a global minimizer of f . For a non-convex function f , this property

does not extend in general as we explore next.

(c) Suppose that x is a local minimum (resp. maximum) of f , i.e., there exists a

radius ⌘ > 0 such that f(y) � f(x) (resp. f(y)  f(x)) for any y such that

ky � xk2  ⌘. Show that x is Clarke stationary. Hint: suppose by contradiction
that 0 62 @Cf(x) and conclude by using the hyperplane separating theorem with the
convex sets @Cf(x) and {0}.

(d) Suppose that infx f(x) > �1 and that infx f(x) is attained. Show that if x is

the unique Clarke stationary point of f , then x is the unique global minimizer of

f .

Finally, we study two examples of non-convex non-di↵erentiable functions: a two-

dimensional input function which has a unique Clarke stationary point that is the

global minimizer, and, a neural network training loss which has a spurious Clarke

stationary point at (0, . . . , 0).

(e) Consider the function with two-dimensional inputs f(x1, x2) = 10 |x2�x2
1|+(1�

x1)
2
. Show that the unique Clarke stationary point of f is (x1, x2) = (1, 1) and

that it is the unique global minimizer of f .

(f) Consider a supervised learning setting with a neural network parameterization:

let X 2 R
n⇥d

be a given data matrix and y 2 R
n
be a vector of real-valued obser-

vations. For the neural network parameters u1, . . . , um 2 R
d
and ↵1, . . . ,↵m 2 R,

consider the loss function

f(u1, . . . , um,↵1, . . . ,↵m) = ky �
mX

i=1

�(Xui)↵ik22 ,

where we have introduced the component-wise ReLU activation function � defined

as �(z) = (max{z1, 0}, . . . ,max{zn, 0}) 2 R
n
for z = (z1, . . . , zn) 2 R

n
. Show

that 0 2 @fC(0, . . . , 0, 0, . . . , 0).
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