EE364b Spring 2020 Homework 1

Due Friday 4/17 at 11:59pm via Gradescope

- 1.1 (3 points) For each of the following convex functions, determine the subdifferential set at the specified point.
- 1.2 (7 points) For each of the following convex functions, explain how to calculate a subgradient at a given x. (e) $f(x)_i = 1$ $f(x)_i$

TS in the top kd d
(f)
$$(Y|bycb)$$

if $kx = b$ $0 \in ff(x)$
if $a, Tx > b_i$
 $k = agmar (a, Tx - b_x)$
 $a_k \in bf(k)$

 (\mathbf{A})

(a)
$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$
. $a_i \mid a_i^T X + b_i$

- (a) $f(x) = \max_{i=1,\dots,m} (a_i x + b_i)$. We are the function of $f(x) = \max_{i=1,\dots,m} |a_i^T x + b_i|$. The function of $f(x) = \max_{i=1,\dots,m} (-\log(a_i^T x + b_i))$. You may assume x is in the domain of f.
- (d) $f(x) = \max_{0 \le t \le 1} p(t)$, where $p(t) = x_1 + x_2 t + \dots + x_n t^{n-1}$. $\hat{t} \left[f(x) = p(t) \left[t, \dots t^{n+1} \right] t \le t^n \right]$
- (e) $f(x) = x_{[1]} + \cdots + x_{[k]}$, where $x_{[i]}$ denotes the *i*th largest element of the vector x.
- (f) $f(x) = \min_{Ay \leq b} ||x y||^2$, *i.e.*, the square of the distance of x to the polyhedron strong olualm defined by $Ay \preceq b$. You may assume that the inequalities $Ay \prec b$ are strictly feasible. (Hint: You may use duality, and then use subgradient the rule for pointwise maximum)
- (g) $f(x) = \max_{Au \prec b} y^T x$, *i.e.*, the optimal value of an LP as a function of the cost vector. (You can assume that the polyhedron defined by $Ay \preceq b$ is bounded.) (*Hint: You may use the subgradient rule for pointwise maximum*)
- 1.3 (2 points) Convex functions that are not subdifferentiable. Verify that the following functions, defined on the interval $[0, \infty)$, are convex, but not subdifferentiable at x = 0. (*Hint: You can prove by contradiction, i.e., assuming that the subgradient condition* holds to reach a contradiction)

(a)
$$f(0) = 1$$
, and $f(x) = 0$ for $x > 0$. In the sum.

(b)
$$f(x) = -x^p$$
 for some $p \in (0, 1)$.

1.4 (6 points) Conjugacy, subgradients and L_p -norms. In the first part of this question, we show how conjugate functions are related to subgradients. Let $f: \mathbf{R}^n \to \mathbf{R}$ be convex and recall that its conjugate is $f^*(v) = \sup_x \{v^T x - f(x)\}$. Prove the following:

(a) For any v we have $v^T x \leq f(x) + f^*(v)$ (this is sometimes called Young's inequality).

$$f(x) + f^{*}(y) = -f(x) + \int_{2}^{\infty} f(x) - f(x) = -f(x) + \sqrt{1}x - f(x) = -\sqrt{1}x$$

1

b)
$$f(y) + f^{4}(g)$$

 $= -f(x) + \sup_{x} \{z^{T}g - f(x)\}$
 $g^{T}x - f(x) + g^{T}y \}$
 $g^{T}x - f(x) + g^{T}y \{z^{T}g - f(x)\}$
 $g^{T}x - f(x) = \sup_{x} \{z^{T}g - f(x)\}$
 $g^{T}x - f(x) = g^{T}x + g(x) + f^{*}(g)$ if and only if $g \in \partial f(x)$.

Note that (you do not need to prove this) if f is closed, so that $f(x) = f^{**}(x)$, result (b) implies the duality relationship that $g \in \partial f(x)$ if and only if $x \in \partial f^*(g)$ if and only if $g^T x = f(x) + f^*(g)$.

In the second part of this question, we apply the result (b) to characterize the subdifferentials of the function $f(x) = ||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$, where $p \ge 1$. We denote $q = \frac{p}{p-1}$ if p > 1 and $q = +\infty$ if p = 1. Note that $\frac{1}{p} + \frac{1}{q} = 1$.

- (c) Show that for any v we have $f^*(v) = \mathcal{I}_q(v)$ where $\mathcal{I}_q(v) = 0$ if $||v||_p \le 1$ and $\mathcal{I}_q(v) = +\infty$ if $||v||_p > 1$.
- (d) Deduce from (b) and (c) that for any x and any g, we have $g \in \partial f(x)$ if and only if $g^T x = \|x\|_p$ and $\|g\|_q \leq 1$.
- (e) Determine $\partial f(0)$ for $p = 1, 2, +\infty$.

In the final part of this question, we extend the case p = 1 in the context of symmetric matrices. Denote **S** the set of $n \times n$ real symmetric matrices. For $X \in \mathbf{S}$, recall the definition of its nuclear norm $||X||_* = \sum_{i=1}^n |\lambda_i(X)|$ where $\lambda_1(X), \ldots, \lambda_n(X)$ are the eigenvalues of X and its operator norm $||X|| = \sup_{i=1,\ldots,n} |\lambda_i(X)|$.

- (f) Consider $f(X) = ||X||_*$. Show that $\partial f(0) = \{Z \in \mathbf{S} \mid ||Z|| \le 1\}$. Determine $\partial f(X)$ for an arbitrary $X \in \mathbf{S}$ in terms of the eigenvalues and eigenvectors of X.
- 1.5 Optional (extra credit, 6 points). Non-convex non-differentiable functions, Clarke subdifferentials and Neural Networks. Let $f : \mathbf{R}^n \to \mathbf{R}$ be a given function that we do not assume to be convex nor to be differentiable (e.g., a deep neural network with ReLU activation functions), so that the subdifferential $\partial f(x) = \{g \in \mathbf{R}^n \mid f(y) \geq$ $f(x) + g^{\top}(y - x) \forall y\}$ is possibly an empty set. In this question, we explore a more general notion of subdifferentials, namely, Clarke subdifferentials, originally referred to as generalized gradients [Cla75].

We make the following technical assumption: we assume that f is locally Lipschitz, i.e., for any $x \in \mathbf{R}^n$, there exists $\eta > 0$ and $L_x > 0$ such that $|f(y) - f(z)| \leq L_x ||y - z||_2$ for any y, z such that $||x - y||_2, ||x - z||_2 \leq \eta$. Then, it follows that the function f is differentiable almost everywhere with respect to the Lebesgue measure (this result is sometimes referred to as Rademacher's theorem [BL10]). We denote by D the subset of \mathbf{R}^n where f is differentiable. In other words, if we consider a bounded open set B in \mathbf{R}^n and we pick x uniformly at random in B, then f is differentiable at x with probability equal to 1.

The Clarke subdifferential of f at x is defined as

$$\partial_C f(x) = \mathbf{Co} \left\{ \lim_{k \to \infty} \nabla f(x_k) \mid x_k \to x, \, x_k \in D, \, \lim_{k \to \infty} \nabla f(x_k) \text{ exists} \right\}.$$

The goal of this exercise is to characterize some basic properties of Clarke subdifferentials, relate $\partial_C f(x)$ to $\partial f(x)$ and study some implications of the condition $0 \in \partial_C f(x)$, which is necessary and sufficient for global optimality in the convex case. Prove the following:

- (a) If f is a continuously differentiable function then $\partial_C f(x) = \{\nabla f(x)\}$.
- (b) If f is convex then $\partial_C f(x) \subseteq \partial f(x)$. (Optional, no credit) Show that equality actually holds, i.e., $\partial_C f(x) = \partial f(x)$. Hint: Suppose by contradiction that there exists $g \in \partial f(x)$ such that $g \notin \partial_C f(x)$. Set $h(x) = f(x) - g^T x$. Show that $0 \in \partial h(x)$ and $0 \notin \partial_C h(x)$. Use the hyperplane separation theorem to conclude.

We say that x is *Clarke stationary* if $0 \in \partial_C f(x)$. If f is convex, then, from (b), we know that x is a global minimizer of f. For a non-convex function f, this property does not extend in general as we explore next.

- (c) Suppose that x is a local minimum (resp. maximum) of f, i.e., there exists a radius $\eta > 0$ such that $f(y) \ge f(x)$ (resp. $f(y) \le f(x)$) for any y such that $||y x||_2 \le \eta$. Show that x is Clarke stationary. *Hint: suppose by contradiction that* $0 \notin \partial_C f(x)$ and conclude by using the hyperplane separating theorem with the convex sets $\partial_C f(x)$ and $\{0\}$.
- (d) Suppose that $\inf_x f(x) > -\infty$ and that $\inf_x f(x)$ is attained. Show that if x is the *unique* Clarke stationary point of f, then x is the unique global minimizer of f.

Finally, we study two examples of non-convex non-differentiable functions: a twodimensional input function which has a unique Clarke stationary point that is the global minimizer, and, a neural network training loss which has a spurious Clarke stationary point at $(0, \ldots, 0)$.

- (e) Consider the function with two-dimensional inputs $f(x_1, x_2) = 10 |x_2 x_1^2| + (1 x_1)^2$. Show that the unique Clarke stationary point of f is $(x_1, x_2) = (1, 1)$ and that it is the unique global minimizer of f.
- (f) Consider a supervised learning setting with a neural network parameterization: let $X \in \mathbf{R}^{n \times d}$ be a given data matrix and $y \in \mathbf{R}^n$ be a vector of real-valued observations. For the neural network parameters $u_1, \ldots, u_m \in \mathbf{R}^d$ and $\alpha_1, \ldots, \alpha_m \in \mathbf{R}$, consider the loss function

$$f(u_1,\ldots,u_m,\alpha_1,\ldots,\alpha_m) = \|y - \sum_{i=1}^m \sigma(Xu_i)\alpha_i\|_2^2$$

where we have introduced the component-wise ReLU activation function σ defined as $\sigma(z) = (\max\{z_1, 0\}, \dots, \max\{z_n, 0\}) \in \mathbf{R}^n$ for $z = (z_1, \dots, z_n) \in \mathbf{R}^n$. Show that $0 \in \partial f_C(0, \dots, 0, 0, \dots, 0)$.

References

- [BL10] Jonathan Borwein and Adrian S Lewis. Convex analysis and nonlinear optimization: theory and examples. Springer Science & Business Media, 2010.
- [Cla75] Frank H Clarke. Generalized gradients and applications. Transactions of the American Mathematical Society, 205:247–262, 1975.