EE364b Prof. M. Pilanci

EE364b Spring 2020 Homework 1
Due Friday 4/17 at 11:59pm via Gradescope

1.1 (3 points) For each of the following convex functions, determine the subdifferential set
at the specified point. 1
G| e
(a) f(xy1, 22, x3) = max{|xy|, |xa|, |x3|} at (z1,x2,23) = (0,0,0). {\/ K
(b) f(z) =€kl at 2 =0 (z is a scalar). (/] ],
. (L1
(¢) f(z1,22) = max{x; + xo — 1,21 — 2o + 1} at (xq1,22) = (1, 1)% / d’E; ng \ 0 | el ]

2 (7 points) For each of the following convex functions, explain how to calculate a sub-
gradient at a given x.
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Y (b) f(z) = maxizy, mla;z + bl’ bl o Z if Py <o
(¢) f(x) =max;—y ( log (a x+b )) You may assume x 1s in the domam of f
4 kxeb oo e (d) f(x) = maxo<i<1 p(t), where p(t) = xy + 2ot + -+ - + 2" tMM V? L&‘la
P oamsh; . (e) f(x)=ap+ -+ xp, where ;) denotes the ith largest element of the vector .
;L Z%; a2 (f) f(x) = mina,< ||z — yl|?, i.e., the square of the distance of z to the polyhedron
defined by Ay < b. You may assume that the inequalities Ay < b are strictly fea- Sﬁ"’a M‘j

g Dk a;;)w sible. (Hint: You may use duality, and then use subgradient the rule for pointwise
% mazimum,)

(g) f(z) = maxa,<py’z, i.e., the optimal value of an LP as a function of the cost
vector. (You can assume that the polyhedron defined by Ay < b is bounded.)
(Hint: You may use the subgradient rule for pointwise maximum)

1.3 (2 points) Convez functions that are not subdifferentiable. Verify that the following
functions, defined on the interval [0, 00), are convex, but not subdifferentiable at z = 0.

(Hint: You can prove by contradiction, i.e., assuming that the subgradient condition
holds to reach a contradiction)

(8) £(0) =1, and f(z) =0 for z > 0. "{"¢ S
(b) f(z) = —aP for some p € (0,1).
1.4 (6 points) Conjugacy, subgradients and L,-norms. In the first part of this question, we

show how conjugate functions are related to subgradients. Let f : R" — R be convex
and recall that its conjugate is f*(v) = sup,{v"x — f(z)}. Prove the following:

) For any v we have vz < f(x)+f*(v) (this is sometimes called Young’s inequality).
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(b) We have g7z = f(z) + f*(g) if and only if g € Of(x).

Note that (you do not need to prove this) if f is closed, so that f(z) = f**(x), result
(b) implies the duality relationship that g € df(z) if and only if z € 9f*(g) if and only
if g"x = f(z) + f*(9).

In the second part of this question, we apply the result (b) to characterize the sub-
1

differentials of the function f(z) = |jz|, = O i, |z:|P)?, where p > 1. We denote
q:}%ifp>1andq=+ooifp:1. Note that }D—l—%:l.

(c) Show that for any v we have f*(v) = Z,(v) where Z,(v) = 0 if ||v||, < 1 and
Z,(v) = +oo if |lv||, > 1.

(d) Deduce from (b) and (c) that for any x and any g, we have g € df(z) if and only
if g"x = [|2[|, and ||g]l; < 1.

(e) Determine 0f(0) for p = 1,2, +o0.

In the final part of this question, we extend the case p = 1 in the context of symmetric
matrices. Denote S the set of n x n real symmetric matrices. For X € S, recall the
definition of its nuclear norm || X[, = Y7, |N(X)| where A\(X),..., A\, (X) are the
eigenvalues of X and its operator norm || X|| = sup,_; ,, |\(X)].

.....

(f) Consider f(X) = || X||«. Show that 0f(0) = {Z € S| || Z|| < 1}. Determine
Of(X) for an arbitrary X € S in terms of the eigenvalues and eigenvectors of X.

Optional (extra credit, 6 points). Non-conver non-differentiable functions, Clarke sub-
differentials and Neural Networks. Let f : R" — R be a given function that we do
not assume to be convex nor to be differentiable (e.g., a deep neural network with
ReLU activation functions), so that the subdifferential df(z) = {g € R" | f(y) >
f(x) + g"(y — x) Yy} is possibly an empty set. In this question, we explore a more
general notion of subdifferentials, namely, Clarke subdifferentials, originally referred to
as generalized gradients [Cla75].

We make the following technical assumption: we assume that f is locally Lipschitz,
i.e., for any z € R", there exists n > 0 and L, > 0 such that |f(y) — f(2)| < L.||ly —z||2
for any y, z such that || — yl|s, ||z — z||]2 < 1. Then, it follows that the function f is
differentiable almost everywhere with respect to the Lebesgue measure (this result is
sometimes referred to as Rademacher’s theorem [BL10]). We denote by D the subset
of R" where f is differentiable. In other words, if we consider a bounded open set
B in R" and we pick = uniformly at random in B, then f is differentiable at x with
probability equal to 1.

The Clarke subdifferential of f at x is defined as

Jcf(x) = Co {kh_g)lo Vi(zy) | xp — x, a2 € D, kli}rgo Vf(xk) exists}.



The goal of this exercise is to characterize some basic properties of Clarke subdifferen-
tials, relate Oc f(x) to df(x) and study some implications of the condition 0 € J¢ f(x),
which is necessary and sufficient for global optimality in the convex case. Prove the
following:

(a) If f is a continuously differentiable function then dc f(x) = {V f(x)}.

(b) If f is convex then Ocf(x) C Of(x). (Optional, no credit) Show that equality
actually holds, i.e., dcf(x) = Of(z). Hint: Suppose by contradiction that there
exists g € Of(x) such that g € Ocf(x). Set h(z) = f(z) — g'x. Show that
0 € Oh(z) and 0 € Och(x). Use the hyperplane separation theorem to conclude.

We say that x is Clarke stationary if 0 € 0o f(x). If f is convex, then, from (b), we
know that z is a global minimizer of f. For a non-convex function f, this property
does not extend in general as we explore next.

(c¢) Suppose that z is a local minimum (resp. maximum) of f, i.e., there exists a
radius 7 > 0 such that f(y) > f(z) (resp. f(y) < f(z)) for any y such that
|ly — x|l < n. Show that z is Clarke stationary. Hint: suppose by contradiction
that 0 & Oc f () and conclude by using the hyperplane separating theorem with the
convez sets Oc f(x) and {0}.

(d) Suppose that inf, f(z) > —oo and that inf, f(z) is attained. Show that if x is
the unique Clarke stationary point of f, then x is the unique global minimizer of

f.

Finally, we study two examples of non-convex non-differentiable functions: a two-
dimensional input function which has a unique Clarke stationary point that is the
global minimizer, and, a neural network training loss which has a spurious Clarke
stationary point at (0,...,0).

(e) Consider the function with two-dimensional inputs f(x1,z2) = 10|z — 22|+ (1 —
x1)?. Show that the unique Clarke stationary point of f is (z1,z9) = (1,1) and
that it is the unique global minimizer of f.

(f) Consider a supervised learning setting with a neural network parameterization:
let X € R™? be a given data matrix and y € R" be a vector of real-valued obser-
vations. For the neural network parameters u, ..., u, € R and ay, ..., am, € R,
consider the loss function

m
flug, ooy um, g, ) = ||y — ZU(X%)OQ‘H%,
i=1

where we have introduced the component-wise ReLLU activation function o defined
as 0(z) = (max{z,0},...,max{z,,0}) € R" for z = (21,...,2,) € R". Show
that 0 € dfc(0,...,0,0,...,0).
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