

·Stochastic programming

min. Е fo(x,w) se. Еfi(X,w) ≤0

a contrar problem if fi is contract in x for each w expectation is interval. I "cereainty-equivalent" problem integral preserves convexity

- min. fo (X, E[w]) this is what's normally down, though not explicitly S.t. fi (X, E[w]) <0 gives a house bound by Jensen's Thequality
- when the "curtainty equivalence" problem is solved, if $Ef_{n}(x^{\dagger},w)$ is not much larger than $f_{n}(x^{\dagger}, Ew)$ and $Ef_{n}(x^{\dagger},w)$ is not much larger than $f_{n}(x^{\dagger}, Ew)$ then it can a safely assumed that the original problem is solved within some peasonable accuracy (postarion analysis)

·Vortiations

Can actually fur in between the expectation and the function any convex, non-demension function. This allows you to shape all sorts of things you like

in place of $E f: (k,w) \leq D$ (constraint holds in expectation) can use

 $\begin{array}{c} \text{Unfortunatuly, chana constraint Prob(f,(X,W) \leq D) \geq y \quad (eg. g = 95\%) \ 15 \ \text{onlvex in only a} \\ few special caus \\ eg. when fr is affine in X and w (linear constraint with uncertain coefficient) \\ its a second - order constraint EEBOUA lecture b \\ a; \sim N(\overline{a}; \Sigma;) \quad a!x is Gaussian with mean <math>\overline{a}$ X, vortance $x^{T}\Sigma; X$ prob($a!X \leq b_i$) = $\overline{p}(\underbrace{b:-a!X}_{H \leq WX})$) $f(x) = \underbrace{p}(b:-a!X}_{a!X}) = \underbrace{p}(b:-a!X}) = \underbrace{p}(b:-a!X}_{a!X}) = \underbrace{p}(b:-a!X}) = \underbrace{p}(b:-a!X}) = \underbrace{p}(b:-a!X}) = \underbrace{p}$ · ontime learning and adaptive signal processing

h

Localisation and cutting - plane method are basically bisection in \mathbb{R}^{n} , \mathbb{R}^{n} , \mathbb{R}^{n} (n > 1), is ordered

Bend invitin time
$$\mathcal{E}$$

 1^{22} and $1^{$

- Convergence of C6 cutting plane method

Suppose P. Ites in ball of radius R. X includes ball of radius r (can take X as set of t suboprimal points)

Suppose X", --- X" & X So R = X

 $d_{n} \cdot P^{n} \leq Vo[P_{k}) \leq (0.63)^{k} Vo[P_{0}] \leq (0.63)^{k} d_{n} P^{n}$ dn is the volume of unitball in \mathbb{R}^n $k \leq 1.51 \cdot n \cdot \log_2 (k/r)$ ($k \leq \log_2 (k/r)$ for bisection)

Advantage of CG-method guaranteed convergence affine invariance number of sceps proportional to dimension n, log of uncertainty reduction

Discultioning $find X^{(k+1)} = CG(P_k)$ is much harder than the oringimal problem