

Project subgradient method
situes constrained optimitration prition
min. for
$$f$$
 is convex
 $x^{(t+1)} = P(x^{(t)} - u \cdot g^{(t)})$
Projection does not increase the distance to $x^{(t+1)}$
(once you have a merit function, you can modify your charithm way
as living as inherener you do does not increase their function
g. linest equalizing contributions
min. for
s.e. $A = b$
projection 3 onto $\{x \mid b = b]$
 $projection 3 onto $\{x \mid b = b]$$$

mm [X], Sł. KX=b

$$g(w) = Sign(w)$$

 $X^{(k+1)} = X^{(k)} - a_{k}(Z - a^{T}(a d^{T})^{T}(d^{T})) Sign(k)$

$$\begin{array}{l} AV = A^{2-b} \\ A^{1}(AA^{1})^{1}(A^{2-b}) \\ V = A^{1}(AA^{1})^{1}(A^{2-b}) \end{array}$$

9x=p

N NU NI

7

produe a low band
$$x^{+} = x^{+} (\lambda^{+})$$
 $y(x^{+}) = (1, x^{+}, \lambda^{+})$
produe a upper bund follow) x^{+} is possible of x^{+} is possible set
g minimizing quadratic fraction one the wine bor
s.t. $x^{+} < 1$
 $(1, x^{+}) = (1, x^$

kFigure 10: The value of $f_{\rm tert}^{(0)} - f^*$ versus the iteration number k. In this case, we use the square summable step size with $\alpha_k = 1/k$ for the optimality update. · Noisy unbiased subgradient

random vector
$$\overline{g} \neq k$$
 is a noisy velocities subjective for $f: \mathbb{R}^{-R}$ of $x \neq f$
 $f(x) > f(x) + E[\overline{g}] \in x$
for all 2. i.e. $g = E[\overline{g}] \in H^{2y}$
Sum as: $\overline{g} = g + v$ $E[v] = v$ Vian topsaw error in amplify g , measurement noise. None $Order
if x is also random, \overline{g} is a Moley unboard subjective of f at $x \neq f$
 $+\overline{z}$. $f(x) > f(x) + E[\overline{g}][x]^{-}(x+x)$
holds almos surely
same as $E[\overline{g}[x] + x^{\frac{1}{2}}(v)$ (almost surely)
Such as subjective method
Such as subjective method
 $x^{\frac{1}{2}} = x^{\frac{1}{2}} - 4e \cdot \overline{g}^{\frac{1}{2}} = E[\overline{g}^{\frac{1}{2}}[x+x]] = g^{\frac{1}{2}} \in f(x^{\frac{1}{2}})$
 $g^{\frac{1}{2}}$ is any Doisy unbland subjective of f at $x^{\frac{1}{2}}$
 $F^{\frac{1}{2}} = inf_x f(w) > w$ with $f(w) = f^{\frac{1}{2}}$
 $F^{\frac{1}{2}} = inf_x f(w) > w$ with $f(w) = f^{\frac{1}{2}}$
 $E[[\overline{g}^{\frac{1}{2}}[x+x]] = g^{\frac{1}{2}} \in f(w)$
 $g^{\frac{1}{2}} = x^{\frac{1}{2}} + \frac{1}{2} = x^{\frac{1}{2}}$
 $F^{\frac{1}{2}} = inf_x f(w) > w$ with $f(w) = f^{\frac{1}{2}}$
 $E[[w]^{-\frac{1}{2}}x^{-\frac{1}{2}}] = R^{\frac{1}{2}}$
Step size as super-sumplie her not summable
 $a_{\frac{1}{2}} > \overline{z}a_{\frac{1}{2}} = |a|||^{\frac{1}{2}} = f^{\frac{1}{2}}$
Convergent in experiments $[m] \in f^{\frac{1}{2}} = f^{\frac{1}{2}}$
 $f^{\frac{1}{2}} = w$ for $f(x + e) = 0$
 $d|w|^{\frac{1}{2}} = w$ for $f(x) = f^{\frac{1}{2}}$ for $x = f^{\frac{1}{2}}$$

· Convergene proof key quantity : expected Euclidean distance to the optimal set $E(||X^{(+1)} - X^{*}||_{\Sigma}^{1}|X^{(k)}) = E(||X^{(k)} - \alpha_{k} \cdot \tilde{g}^{(k)} - X^{*}||_{\Sigma}^{1}|X^{(k)})$ $= || X^{(k)} - X^{*} ||_{-}^{*} - 2\alpha_{k} \cdot E[\tilde{g}^{\mu} T (X^{k} - X^{*}) | X^{k}] + \alpha_{k} \cdot E[|| g^{k} ||_{-}^{k} | X^{k} |]$ $= \| X^{(k)} - X^{*} \|_{L^{\infty}}^{L^{\infty}} - 2\alpha_{k} \cdot (X^{(k)} - X^{*})^{T} \cdot \mathbb{E}(\widetilde{g}^{(k)} | X^{(k)}) + \alpha_{k} \cdot \mathbb{E}[\| g^{(k)} \|_{L^{\infty}}^{L^{\infty}} | X^{(k)}]$ $f(X^{*}) \leq f(X^{*}) + E[\tilde{g}(X^{*})]^{T}(X^{*} - X^{*})$ $\leq \| X^{(k)} - X^{*} \|_{2}^{k} - 2 \alpha_{*} \left(f(X^{(k)}) - f^{*} \right) + \alpha_{k}^{k} \cdot E \left[\| g^{(k)} \|_{2}^{k} | X^{k} \right]$ $\underbrace{ \sum_{x_{i}} \left[\| x^{(k_{i})} - x^{*} \|_{r}^{2} \right] }_{x_{i}} \leq \underbrace{ \sum_{x_{i}} \left[\| x^{(k_{i})} - x^{*} \|_{r}^{2} \right] - 2a_{k} \left(\underbrace{ \sum_{x_{i}} \left[f(x^{(k_{i})}) - f^{*} \right] + a_{k}^{2} \underbrace{ \sum_{x_{i}} \left[\| g^{(k_{i})} \|_{r}^{2} \right] }_{x_{i}} \right) }_{x_{i}}$ $\leq \underbrace{\mathbb{E}}_{\mathcal{F}}\left[\|X^{\psi}-X^{*}\|_{r}^{r}\right] - 2 \underbrace{\mathbb{E}}_{r} a_{k}\left(\underbrace{\mathbb{E}}_{r}\left[f(X^{k})\right] - f^{*}\right) + \underbrace{\mathbb{E}}_{r} a_{k} \underbrace{\mathbb{E}}_{r}\left[\|g^{k}\|_{r}^{r}\right]$ $\leq \mathbb{E}\left[||X''-X^*||_{\mathbf{L}}^*\right] - 2 \stackrel{\sim}{\neq} \mathcal{O}_{\mathbf{L}}\left(\mathbb{E}\left[f(x^*)\right] - f^*\right) + \mathcal{O}_{\mathbf{L}}^* \stackrel{\sim}{\neq} \mathcal{O}_{\mathbf{L}}^*$ $\leq E[||X^{u} - X^{*}||_{L}] - 2 \geq a_{L} \cdot m_{i} \cdot [E[f(X^{i})] - f^{*}] + 6^{*} \cdot \geq a_{L}$ $\min \left\{ \Xi \left[f(x^{m}) \right] - f^{2} \right\} \leq \frac{k^{2} + 6^{2} \cdot \Xi}{2 \cdot \Xi} \left\| \Delta u \right\|_{2}^{2}$ min E[f(xi)] → f* Jensen's inequality and concavity of minimumin yields : $\mathbb{E}\left[f_{\text{besc}}^{\text{by}}\right] = \mathbb{E}\left[\min_{i=1,\dots,k} f(X^{u})\right] \leq \min_{i=1,\dots,k} \mathbb{E}\left[f(X^{u})\right]$ EI fly] -> fx contraryence in expectation Markov's inequalicy Prob $(f_{best}^{(k)} - f^{*} \ge E) \le \frac{E[f_{best}^{(k)} - f^{*}]}{e}$ ths goes to 0, so we get convergence in probability

gy. Stochustic programming.

 $\begin{array}{ll} \min & E \not = f_0(X,w) & (posterior analysis) \\ s \cdot t & \equiv f_1(X,w) \leq 0 \end{array}$

a convex problem is convex if f; (x, w) is convex in x for each w