
A Tour through Sampling Theorem, Discrete Fourier Transform,
Orthogonality of Complex Exponentials and Inverse DFT

J.R

June 12, 2021

In this note, I wanna sort out the logic of going from Sampling Theorem to DFT, and finally get
to Inverse DFT by exploiting the orthogonality of complex exponentials. The expected effect of this
note is to help you (and, of course, me) to understand DFT and np.fft package, what exactly it takes
in and returns and why. Most of the content is from EE261 lectures, with some extra examples made
up by myself.

1 Sampling Theorem
Suppose f is a band-limited signal with bandwidth p, i.e. Ff(s) = 0 ∀|s| > p

2 . The spectrum of f
looks like

we can first convolve Ff with a Shah function Xp to get a period version of Ff with period p,
then get back the original Ff by multiplying a rectangle function Πp

This operation can be written as

Πp · (Ff ∗Xp) = Ff (1.1)

Though this seems to be a trivial operation, it has significant implications. We take the inverse Fourier
Transform to both sides. The righthand side becomes F−1Ff = f . By applying the convolution
theorem, we can see that the lefthand side becomes

1

F−1

[
Πp · (Ff ∗Xp)

]
=F−1Πp ∗ F−1

[
Ff ∗Xp

]
=

[
psinc(pt)

]
∗
[
f · F−1Xp

]
=

[
psinc(pt)

]
∗
[
f · 1

p
X1/p

]
=sinc(pt) ∗

[
f(t) ·

∞∑
k=−∞

δk/p(t)

]

=sinc(pt) ∗
[∞∑
k=−∞

f(
k

p
) · δk/p(t)

]

=
∞∑

k=−∞
f(

k

p
)sinc(pt) ∗ δk/p(t)

=
∞∑

k=−∞
f(

k

p
)sinc(p(t− k

p
)) (1.2)

Thus we have f(t) =
∑∞

k=−∞ f(kp)sinc(pt − k). This formula tell us that, if f is a band-limited
signal with bandwidth p, we can interpolate all values of f in terms of discrete samples spaced no
more than 1

p . However, when we sample at a rate lower than p, Πp · (Ff ∗Xp) does not give back
Ff and something will go wrong. Let’s see an example.

eg 1. Pure sine function
f(t) = sin(2π0.5t) has frequency 0.5, and f has Fourier Transform Ff(s) = 1

2i(δ0.5(s)− δ−0.5(s)).
The graph of f and Ff looks like

(a) (b)

Note that Ff(s) = 0 for s strictly larger than 0.5.
The bandwidth of f is anything larger than 1. When we interpolate f using (1.2) with sampling

rate p, what we are really doing (1.1). However, when we sample at a rate lower than the bandwidth,
the equality in (1.1) does not hold anymore.

For example, when we interpolate f with a sampling rate exactly 1, the sample points are shown
below

2

we have

Ff ∗X1 =
1

2i
(δ0.5 − δ−0.5) ∗

∞∑
k=−∞

δk

=
1

2i

∞∑
k=−∞

(δk+0.5 − δk−0.5)

Π1 · (Ff ∗X1) =
1

2i
(δ0.5 − δ−0.5 − δ0.5 + δ−0.5) = 0

Then take the Fourier Transform, F−10 = 0. We get a constant function 0 because we were
sampling at too low a rate so that those sample points completely missed the oscillations between
samples. Just like we see a resting fan when the fan is spinning at a certain speed.

Though the constant function is not the original sine function, it agrees with the sine function at
the sample points, and that’s called a "alias" of f .

Now let’s do something reasonable. f has bandwidth just larger than 1, let’s sample with a rate
2. When we sample at a rate 2, the samples are spaced 0.5 from neighbor sample points. The sample
points are shown below

Always remember that when we interpolate from sample points, what we are doing is convolving
and multiplying in the spectral domain. When we sample at a rate 2, we are convolving with X2

and multiplying by Π2, as shown below. Π2 · (Ff ∗X2) gives back the original Fourier Transform,

so when we perform the inverse Fourier Transform, we get back f .

3

For the sake of practicalness, let bring in some units. For example, the unit of f(t) = sin(2π0.5t)
is in seconds, then f has frequency 0.5 Hz, f and Ff looks like

(a) (b)

the bandwidth of f is 1Hz, the samples should be spaced at most 1
p = 1

1/second = 1 second from
neighbors.

2 Discrete Fourier Transform
Until now, everything is continuous, to make an analogy of Fourier Transform in discrete space, we
need to

• Approximate f with a discrete function

• Approximate Ff with a discrete function

Assume function f(t) to be time-limited to [0, L], i.e. f(t) = 0∀t > L or t < 0, and band-limited
to [0, 2B], i.e. Ff(s) = 0∀s > 2B or s < 0. Here we assume than Ff has non-zero domain [0, 2B] in
stead of [−B,B] for the convenience of indexing that will come up later.

According to the sampling theorem, to reasonably approximate a band-limited signal with band-
width 2B, we want to take samples at a rate 2B, so the samples have spacing 1

2B , giving us a total
number of N samples, as shown below.

The sample form of f can be written as fsp(t) = f(t)
∑N−1

k=0 δtk(t) =
∑N−1

k=0 f(tk)δtk(t), which is
continuous in terms of t, so that we can easily compute its Fourier Transform

Ffsp(s) =
N−1∑
k=0

f(tk)e
−2πitks (2.1)

, where tk = k
2B .

4

Then we want to approximate Ffsp, which is a continuous function, with a discrete function.
Again, we want to take sample under the guide of sampling theorem. Now, do not think fsp as in the
time domain and Ffsp in the frequency domain, just think fsp(t) and Ffsp(s) as normal functions
in domain t and s, respectively. Then the Fourier Transform of Ff takes us from domain of s back
to the domain of t. Thus, we know that Ff has bandwidth L. That’s a tricky change of viewpoint,
take some time and think it through. So, Ff has bandwidth L, thus we want take samples spaced
1
L , the sampling of Ff looks like

Notice that we assume that f is band-limited to [0, 2B], however, the spectrum of the fsp is
different than spectrum of f , that is, Ff is not identical to Ffsp. Actually, fsp often have larger
bandwidth than f , because there are discontinuities at sample points and it takes high frequencies
to make jump discontinuities. Here we just simply assume that fsp is also band-limited to [0, 2B].
I guess the motivation is, those frequencies outside [0, 2B] did not belongs to f . Low frequencies,
which are frequencies of f , come in to meet sample points and high frequencies come in to make
jump continuities, so we just pretend they are not there when we approximate the spectrum of f .
It’s just my guess.

Another thing to notice is that when we sample f , we took N = 2BL samples, here when we
take samples spaced 1

L apart on an interval [0, 2B], it also give us a total number of N samples.
Now we can write the sampled version of the Fourier Transform of sampled f (take time to get

it straight) as

(Ffsp)sp(s) = Ffsp(s)

N−1∑
m=0

δsm(s)

=

(N−1∑
k=0

f(tk)e
−2πitks

)(N−1∑
m=0

δsm(s)

)

=

N−1∑
k=0

f(tk)

(N−1∑
m=0

e−2πitksmδsm(s)

)
Where sm = m

L When s is a sample point, erasing all 0 terms, we get the sampled version of the
Fourier Transform of sampled version of f , (again, take time and get this straight)

(Ffsp)sp(sm) =

N−1∑
k=0

f(tk)e
−2πitksm (2.2)

Here we still has "continuous term" tk = k
2B and sm = m

L . But tksm = km
2BL = km

N is a "discrete term"
since k and m are integers. Now we are ready to declare victory.

Suppose we have a discrete signal that contains N data, f = [f0, f1, ..., fk], we define Discrete

5

Fourier Transform, which gives us another discrete signal Ff , as

Ff [m] =

N−1∑
k=0

f [k]e−2πi km
N (2.3)

which is a "purely discrete" operation.
Though it is okay to only think about this as a well-defined operation on a discrete signal and

ignore the L and B stuff, I think it can be helpful to regard the discrete signal as coming from a
continuous signal and keep those "approximation steps" in mind.

Another thing to notice is the relationship between the spacing in time domain and spacing in
frequency domain. In time domain, we took N samples in interval [0, L], the spacing ∆t between
2 neighbor samples is 1

2B . In frequency domain, we took N samples in interval [0, 2B], the spacing
∆s between 2 neighbor samples is 1

L . Then we have ∆s∆t = 1
2BL = 1

N . This reveals the reciprocal
relationship, which is the relationship often shows up in the context of Fourier Transform, between
∆s and ∆t. Also, it tells us that once any two of ∆s, ∆t and N are fixed, than the other one is
determined by the fixed two, and that is what np.fft.fftfreq does.

eg2. np.fft.fft
Suppose we have a signal f(t) = sin(2πt) + sin(2π3t) that lasts for 2 seconds, where t is in

seconds. From the formula we know that f has frequencies 1Hz and 3Hz. But let’s suppose that
we do not have the formula for the signal and the only thing we know about it is that it has no
components that’s higher than 5Hz, let’s get back the formula with Discrete Fourier Transform.

First, since we know f is band-limited to [-5Hz,5Hz], we have its bandwidth 2B = 10Hz. Ac-
cording to the sampling theorem, spacing between samples should at most be 1

10Hz = 0.1s, giving us
a total number of 20 samples. So let’s generate the sampled signal.

import numpy as np
f s = [1 , 3] # f r e q u e n c i e s o f s in wave
B = 5 # p r i o r knowledge o f bandwidth
durat ion = 2 # 2 seconds
bandwidth = 2 ∗ B
sample_spacing = 1 / bandwidth
N = int (durat ion / sample_spacing)
xs_cont = np . arange (0 , durat ion , 0 . 01)
ys_cont = np . z e r o s_ l i k e (xs_cont)
for f in f s :

ys += np . s i n (2 ∗ np . p i ∗ f ∗ xs)
ys_cont += np . s i n (2 ∗ np . p i ∗ f ∗ xs_cont)

p l t . p l o t (xs , ys , l a b e l=’ samples ’)
p l t . p l o t (xs_cont , ys_cont , l a b e l=’ t rue ␣ s i g n a l ’)
p l t . l egend ()
p l t . show ()

The sampled signal looks like

6

Now we have the sampled signals, and from now on, we will no longer have the formula of f and
we want to recover the formula from the sampled signal.

First let’s take a look at np.fft.fftfreq. Remember that when we fix ∆t and N , ∆s is then
determined by ∆t and N . Here we have L = 2s, the spacing in frequency domain is 1

L = 1
2s = 0.5Hz.

Since we take N samples in both time and frequency domain, samples spaced 0.5Hz apart gives us
the frequencies [-5Hz, -4.5Hz, ... , 4Hz, 4.5Hz], making the interval symmetric. The np.fft.fftfreq
just calculate the sample points in frequency domain for us, but in a different order. And np.fft.fft
returns the "Fourier Coefficients" corresponds to each frequency returned by np.fft.fftfreq. You will
see why I added quote on "Fourier Coefficients" later. The code below show the sampled frequencies
and the corresponding coefficient if the coefficient havs magnitude larger than 1e-8.

Ff = np . f f t . f f t (ys)
f r e q s = np . f f t . f f t f r e q (N, sample_spacing)
for s , F in zip (f r eq s , Ff) :

i f np . abs (F) > 1e−8:
print (s , F)

We get frequency-coefficient pairs

1.0 (-4.715509157353898e-15-9.999999999999995j)
3.0 (-8.418070490254451e-17-10.000000000000005j)
-3.0 (-4.829976635421454e-16+10.000000000000005j)
-1.0 (-4.905945511304625e-15+9.999999999999995j)

For frequencies 1.0, 3.0, -3.0 and -1.0 have coefficient -10i, -10i, 10i, 10i, respectively, with some
rounding done by human under the table. Those are exactly the frequencies we wanted. However, if
we want to reassemble f from those frequencies and coefficients, we get

− 10ie2πi1t − 10ie2πi3t + 10ie−2πi1t + 10ie−2πi3t

=10i(e−2πi1t − e2πi1t) + 10i(e−2πi3t − e2πi3t)

=10i(−2isin(2π1t)) + 10i(−2isin(2π3t))

=20(sin(2π1t) + sin(2π3t))

which is almost right but with an extra factor 20. If you are sensitive enough, you may notice that
the extra factor 20 is the number of sample points. We’ll get to this later.

3 Orthogonality of Complex Exponentials
In this section, we’ll stay in the discrete world and let go all the continuous thing. Now we have the
definition of Discrete Fourier Transform

F [m] =

N−1∑
k=0

f [k]e−2πi km
N (3.1)

We can see the complex exponentials e2πi
km
N , k = 0, 1, ..., N − 1 as itself a vector

ω = [1, e2πi
1
N , e2πi

2
N , ..., e2πi

N−1
N]

where ω[k] = e2πi
k
N . The power of ω is just each of its element powered.

ωm = [1, e2πi
m(1)
N , e2πi

m(2)
N , ..., e2πi

m(N−1)
N]

7

Equation (3.1) can be written as

F =
N−1∑
k=0

f [k]ω−k = Wf (3.2)

as illustrated in the following picture, where W is a symmetric complex matrix, columns of which
are exponentials of ω.

Besides symmetry, there is a very important property of the matrix W , that is, let me put it
in extra large font, Orthogonality. To study the orthogonality of the matrix, let’s study the
orthogonality of any two columns, ωl and ωk, of W . Take the inner product of ωl and ωk

< ωl, ωk > =
N−1∑
m=0

ωl[m] · ωk[m]

=
N−1∑
m=0

e2πi
ml
N · e−2πimk

N

=

N−1∑
m=0

e2πi(l−k)m
N

When (l − k)%N = 0, (l − k)mN is an integer, so e2πi(l−k)m
N = 1 and < ωl, ωk >= N . When

(l − k)%N ̸= 0, we have a geometric series

8

N−1∑
m=0

e2πi(l−k)m
N

=
1− (e2πi(l−k) 1

N)N

1− e2πi(l−k) 1
N

=
1− e2πi(l−k)

1− e2πi(l−k) 1
N

=0

Put it together, and since W has only N columns, we get

< ωl, ωk >=

{
0 l ̸= k

N l = k
(3.3)

We can see that W is a orthogonal matrix, or say, those complex exponential vectors are "orthog-
onal" to each other. However, it’s not an orthonormal matrix since < ωl, ωl >= ||ωl||22 = N instead
of 1. And that’s why there was a factor 20 in the previous example where we had N = 20 samples.

4 Inverse DFT
Now I have a treat for you. Since we concluded that W is an orthogonal matrix, it means we can
easily invert this matrix, reverse the DFT process and get back f from F , leading to inverse DFT.

Since W is an orthogonal complex matrix with each column vector having norm
√
N , we can

have W TW = NI. And because W is a symmetric matrix, we have WW = NI. DFT written in
a matrix multiplication form F = Wf combined with WW = NI gives us WF = WWf = Nf , a
multiple of the original discrete signal f .

We can easily write down the formula for inverse DFT in matrix form

f =
1

N
WF (4.1)

as shown in the picture below. Actually, the processes of DFT and Inverse DFT are all about this
picture, we don’t need to remeber the formula once we have this picture in our head, so I think it’s
worth a whole page. But for the sake of completeness, let me write down the formula for inverse
DFT and wrap up this note.

f =
1

N
WF

=
1

N

N−1∑
k=0

F [k]ωk (4.2)

f [m] =
1

N

N−1∑
k=0

F [k]e2πi
mk
N (4.3)

9

10

