Conjugate Gradient Method: Steepest Descent with Orthogonal
Directions under Change of Coordinate

JR

July 21, 2021

In this note, I want to guide you through the motivation and derivation of the bizarre Con-
jugate Gradient Method (CG Method) and show you that a method as intricate as CG Method
is nothing more than a steepest descent with a change of coordinate.

Contents

I Linear Equation and Quadratic Form 2
B Steepest Descent 3
b Conjugate Directions 5
g Steepest Descent and Conjugate Directiong 7
p__Almost Conjugate (Gradient VMlethod 8
b__Simplifing "Almost CG Method"| 11
[_Finally, Conjugate Gradient Method 12
B Conclnsion 15

1 Linear Equation and Quadratic Form
Let’s begin with a linear equation
Az =1b (1.1)

where A is symmetric and positive definite. In most situation, we can solve this linear equation
by factoring A in to a product of a lower-triangle matrix and an upper-triangle matrix and doing
backward/forward substitution. However, when A is huge, for example, 1 million by 1 million,
the factoring seems to be intractable. Thus we have to come up with other methods for solving
a large-scale linear system.
The quadratic form of (1.1) is

fz) = %xTAa: et (1.2)
We call (1.2) the quadratic form of (1.1) because the solution to (1.2) 2* = A~!b is the solution to
(1.1). In other words, if we can solve optimization problem (1.2), we can solve the linear equation
(1.1). Let’s introduce some definition which will be used across this note.

z* = A7'b = argmin, f(z)
e(i) = (@) — "
i) = —Aew) = b— Az = =V f(ze)

e is called the error at z(;) and r(;) is called the residual at z;).

And in this note, we will have a running example where A = 2 - (3448 9168) p = (%)
and ¢ = 6.25, so that f(x) = (z — u)T P(z — u), where P has eigenvalue decomposition P =
(2/\/5—1\/5> (1/4 0) (2\/5—1\/5

W5 2v5 0 1/25) \1v5 2V5
are ellipsoids tilted and centered at [2,1].

T
) and u = [2,1]. The contour lines are showed below, which

Figure 1: Contour lines of running example

2 Steepest Descent

(1.2) is a convex optimization problem, we can solve it with many methods like newton method.
However, in second-order methods, we need to invert A, which is too expansive so that we want
to avoid. So we may want to use some first-order method. The first method coming to mind is
gradient descent, but choosing step size in gradient descent can be tricky. For a problem has a
simple quadratic form, we can easily do line search, which leads us to steepest descent. At each
step in steepest descent, we evaluate the gradient, and go in the direction of negative gradient,
which is r(;), until we reach a minimum along the direction of r(;. The step size is calculated by
setting the gradient to 0

d
%f(@i) + a(i)r(i)) =0 (2.1)
7“%;) [b — A(.%'(Z) —+ 04(1)7"(1))] =0 (2.2)
rLop.
@) (@)
Oz(l) =0 (23)
r(jg)Ar(i)

Steepest descent on the running example with different starting point is shown in the following
picture, stopping criterion is when |[[r(;||2 < le — 6.

(a) (b)
Figure 2: Steepest descent on running example

Notice that search directions are orthogonal to the previous one. We can easily get this result
from (2.1).
d
ACIORCIOLOY
=1y V(@) + a@mre)
=— Tg;)r(iﬂ) (2.4)

when we set %f(x(i) + a)r@y) to 0, r%’;)'r(iﬂ) = 0 naturally follows.

One problem with this method is that we step in the same direction for many times. For
example, in figure 2(a), we first take a step to the right(roughly speaking), then take a step down,
and right, and down, Wouldn’t it be nice if we can take a full step to the right and never go
in that direction again. To be more concrete, after take a step in the direction of d(;) with step
size a;), the error at (@ + a(;)d(;y is orthogonal to previous searching direction d; so that we
don’t need to go in direction of d;) ever again, as illustrated in the following picture.

Figure 3

In figure 3, 2 is the minimizer subject to direction d(;. We can see that, to make e(; 1)
orthogonal to the previous searching direction, we have to overshoot or undershoot compare to
& depending on the shape of the ellipsoid. We can calculate the step size a(;) by

dfyet™ =0 (2.5)
T 7
dly (e + agydipy) = 0
e
Od(i) = —— (2.6)
diyydi)

That means we cannot calculate o ;) without knowing e(;), and the "orthogonal search direc-
tions" idea is infeasible. The problem with "orthogonal search directions" idea is that we have to
"overshoot" or "undershoot". With that in mind, can we come up with something just like the
"orthogonal search directions" but in which we don’t have to overshoot? Fortunately, yes. And
that is called "Conjugate Directions'.

3 Conjugate Directions

In the previous section, we found that if we want e;;1) to be orthogonal to previous search
direction d(;), we have to "overshoot" or "undershoot".

The reason why we have to overshoot or undershoot is the asymmetry of ellipsoid. When we
have a unit circle or unit ball, which is homogeneous in all direction, the resulting error after
minimizing along a direction is guaranteed to be orthogonal to the search direction, as illustrated
in the following picture.

Figure 4: Orthogonal directions on unit circle

We can see from the picture that when minimize a quadratic function with A = I along a
direction, resulting error is orthogonal to error. Mathematical proof can be easily given.

Now the problem is, we have a quadratic function f(z) = %:cTAx—bTx—i—c, whose contour lines
are ellipsoids, not unit balls. How can we make it a unit ball? The answer is, not surprisingly,
yes and by changing coordinate.

Let uw = AY22, we have

f(z) = f(u) = 1uTu — (A7) Ty + ¢

2
T -1
= % (u—AY20) (0 — A7V20) | — # +c (3.1)

by dropping constant terms, we can see the contour lines of f are unit circles centered at A~1/2p,
as illustrated in the following picture.

a4 2 o 2 a1 & s
Figure 5: Change of coordinate u = A2z

We can easily apply orthogonal directions as search direction in the new coordinate system,
and when we find u* = A~Y/2b, we can get z* = A~Y2u*. (Actually we do not have to do this,
but this is the idea.)

Thus, instead of orthogonal directions in the old system of where the ellipsoids lie, we now
need a group of direction which are orthogonal to each other in the new coordinate system.

Suppose d(;y and d(j are two vectors in old coordinate system, under change of coordinate,
we have J(i) = A1/2d(i) and J(j) = A1/2d(j). Since d(;) and dy;) are orthogonal under after of
coordinate, we have

(Al/Zd(Z))TAl/Qd(]) -0
dlyAd) =0 (3.2)

If d(;) and d;) satisfies (3.2), we say d(;) and d(; are A-orthogonal, or in more fancy words,
A-conjugate. Roughly speaking, in this context, conjugate means "orthogonal under linear trans-

formation". The following pictures shows some conjugate vectors when A = <1é4 ?)

3 3

Figure 6: Conjugate vectors

4 Steepest Descent and Conjugate Directions

When applied to quadratic programming, steepest descent, combined with conjugate directions,
has very interesting property and this can be seen with a change of coordinate. This section will
be divided into two columns, the left column is what we do in the original coordinate system,
the right column is what happens in the new coordinate system u = A2y

fla) = gaT Az Va4 c fla) = guTu— (A28 ut c
x* solves Az = b. u* solves Tu* = A=1/2p
e(i) = L@ — T €(i) = U — U’
Vf(x)=Az—-b Vf(u)=u—A"1%
7“(2) = A(.’E* — x(,)) = —Ae(i) T = I(u — U(Z)) Ie()
= —AFL‘(Z) +b= —Vf(x(z)) = A" 1/2b — Uy = Vf(U(z))

When we search in direction of d(;) in the original coordinate system, we are searching in
direction AY/ Qd(i) in the new coordinate system. And we step in the searching direction with a
step size ;) such that the resulting point minimize the function along this direction. The step
size can be calculated by setting the gradient to 0.

1/2
Ta+1) = 26 + 4@) WMZUm+amA/%n
d 1/2
ida(‘)f(ﬂf(i) +a@de) =0 da(——flug) +apnAPdg) =
V(@) + a@da) de =0 V f(ug) + a A2 d) T (AP dg) =
T i) __ ~T 1/2 —
€(¢+1)Ad() =0 ClrnA / i) =0

Let’s translate the above math into English. When we go from z;) in the direction d(;), we are
going from u(;) in the direction Al Qd(i) in the new coordinate system. If z(*) 4 a(;)d(;) minimizes
f in the direction of d(;), then u) + a(i)Al/Qd(i) minimizes f in the direction of Al/Qd(i) (since
it’s a linear transformation). However, in the new coordinate system, because the contour lines
of f are circles/balls, the resulting error €ix1) = AY/ 2e(i+1) is guaranteed to be orthogonal to the
previous searching direction A/ Qd(i). Thus we can know that e%;. +1)Ad(") = 0.

In other words, in the original coordinate system, when we minimize the function along a
direction d(;), the resulting error e(;, 1) and searching direction d; are A-orthogonal, or say,
conjugate, as shown in the following picture.

u=AV?g

Figure 7: Steepest descent under linear transformation

5 Almost Conjugate Gradient Method

In the previous section, we see that when we apply steepest descent to a quadratic function, in
the new coordinate system, the resulting error is orthogonal to the searching direction. That
means, in the new coordinate system, after minimizing along a direction, we don’t need to go
into that direction again, or say, the later searching directions are gonna be orthogonal to the
current searching direction.

Thus, if we have n orthogonal vectors that spans the space of new coordinate system, where
n is the dimension of the space, then we can iteratively minimize over each of these directions.
In other word, we need a group of vectors d;) in the original coordinate system that are A-
orthogonal.

Instead of having n A-orthogonal vectors at the beginning, we can gradually build up a group
of them by Gram-Schmidt conjugation. Let me brutally show you the "almost conjugate gradient
method" and then explain it.

d(o) = 7"(0) (51)
=1 qT Ar,
(M@
diy =760 = Q71 a7) (5.2)
; di;yAdg)
rL d,.
(3)“(0)
i) = (5.3)
df, Ady
21y = 27 + agydg (5.4)

At first step, we perform steepest descent along the direction of negative gradient r(g). At each
following step at z(;), we evaluate the negative gradient r(;) and build d(;) which is A-orthogonal to

all previous searching directions. First, we take r(;) and previous searching directions d;) (7 <)
to the new coordinate system, we get

Py = AV (5.5)
djy = AY?dgy (5 <) (5.6)

Then we project 7(;) on each of aNl(j), the projection of 7(;) on ‘Z(j) is
-1
- 7 T 5 T =
Fi) @) = dg) [dmdu)] ROUD
-1

= A2 ;) [(Al/ 2d) T (A2 dg) | (AYRd)T AY G

dr. Arg;
@H@ 4170
= ————Ad (5.7)
d(jAdg)
then we subtract 7(;) by it’s projection on all CZ(j) such that j < ¢, then the remaining part is

surly orthogonal to all previous d;) (in the new coordinate system)
=1 al Arg
7 . @D@ 4170
diy =7 =) o7 1Ay
= 4 Ady)
=1 qr A
A2 D@ q1/24 .
T(l) Z dT. Ad(,) () (5 8)
j=0 ")V

We have az(i) orthogonal to all previous ci(]-) in the new coordinate system. The next thing to do

is to bring d(; to the original coordinate system

diy = A™'dy)
i—1 T
=70 Z o dij)
-0 aT Aq, . U
=0 d(;Adg)
thus we get (5.2). .
Since d;) is orthogonal to all d(;) in new coordinate system, d;) is A-orthogonal to. all d;
in the original system.
Now we have the searching direction d(;), what we need is the step size for steepest descent
a(;), which we can calculate by setting the gradient to 0.

dag, T @0 +awda) =0

T
V(e + a@de) dg =0
T
Az) + agdg) — b dg =0
T T
rioda)

0 = 0 Ady

thus we get (5.3).
Figure 8 and Figure 9 show progress of the "almost conjugate gradient" with different starting
points.

8 8
6 6
(o
4 4
u= A%y
5]
5
0] 0
-2 -2
-4 —4 1
6 . 6
4 O 0 2 4 6 8 4 2 0 2 4 6 8

Figure 8: Almost conjugate gradient method

8 8
6 6
(0
4 4
u= A%y
5]
s
0] 0
-2 -2
-4 —4
6 | 6
4 2 0 2 4 6 8 4 2 0 2 4 6 8

Figure 9: Almost conjugate gradient method

As you can see, applying steepest descent with conjugate directions in the original coordinate
system is equivalent to applying steepest descent with orthogonal directions in the new coordinate
system, and the reason we can do this in the new coordinate system is that the contour lines in
the new coordinate system are circles and resulting error of steepest descent is guaranteed to be
orthogonal to previous searching direction.

10

6 Simplifing "Almost CG Method"

If you have understand the "almost conjugate gradient method", you now get the core idea of the
conjugate gradient method. Now we are one step away from the real conjugate gradient method,
and that step is to reduce the complexity of the "almost conjugate gradient method". One thing
you may notice that when we build d;) according to (5.2), we must use all previous d(jy so that
we must keep all d(;) in memory and that can be a large storage. However, by exploring the
properties of spaces spanned by all d(;) and by r(;), we can simplify the process of building d ;).

Suppose D; = span{d(o), d(1y; -y d(i)} is the space spanned by first ¢ searching directions and
span{r(o),r(l), v r(i)} is the space spanned by first ¢ residuals. Now we can build the fact that
span{r), (1), - 7(s)} = D; using mathematical induction.

if span{rg, ceey 7‘(1)} = span{d(o), d(1)7 ceey d(z)} = Dz
. dE)AT(z‘—H)

dz’ = o Q) Ny S
(i4+1) T(i+1) = dz;)Ad(]) (9)

ospan{d(gy, .., d(iy1) } = span{do), .-, d(s), T(i41) }
= span{Dj, r(i11)}
= Span{r gy, .-, (i), T(i+1) }
~ do) =7(0)
. span{dy } = span{r(}
-.span{d gy, d(1), -, d(s)} = span{ro, ..., 75 } Vi
Based on this conclusion, we can get more equations which can help us to simplify the "almost

conjugate gradient method".

First, since all search directions in the transformed coordinate system J(k) are orthogonal to
each other, the error in transformed coordinate system can be written as €.;) = Zz;jl 5(k)j(k)-
Taking this to the original coordinate system, we can write ;) = ZZ;; d(k)d(x)- Multiply both
sides by d?;)A where ¢ < j, we have

n—1
T T
diyAey =Y d(yd(y Adggy = 0 (6.1)
k=j

since d(;)’s are A-orthogonal, da)Ad(k) unless ¢ = k. Thus we have

dfyAey =0 (i <j)

dlyrgy =0 (i <) (6.2)
-1y Lo span{d gy, d(1y, dy)li < 7}

o span{d(y, d(1); .-, d(iy } = span{ro, ...,)} Vi

Sy Lospan{r o), Ty, T i < J}

sray Lr)Voi#E g (6.3)

11

Once we have r(;) L 7V i # j, we multiply both sides of (5.2) by rg;.), we have

=1 gl Ar,
T T (HE) 7
riadin = TiaTr — ———riady
doy = e = D T do)
= dinAdy)
T T
@ d6) =TT (6.4)

7 Finally, Conjugate Gradient Method

In the previous section, by exploiting the spaces spanned by d(;’s and by r(;’s, we get two
identities

1. ’l“(z) 1 T(j)v Z;’é]

Now we use these two identities to simplify the "almost conjugate gradient method" and get the
real conjugate gradient method. First, by the definition of the residual, we have

41y = b— Az
=b— Az + agyd(y))
=1(j) — ag)Adg) (7.1)

and multiply both sides of (7.1) by 7’6)

T T T
THTGH) = @G ~ 4G AdG)

TiAT(5) = TiaT
T EROME) ()" (G+1)
"oy Adg) = s
(4)
(2(;) i=]
) =+l (7:2)
0 otherwise

From (7.2) we can see that most term in the summation in (5.2) appears to be 0. By plugging
(7.2) into (5.2), we get

i1 d%;)AT(Z)

diy =re) — Y =7 dj)
=0 d(j)Ad(j)
dT A’I”l'
— - g
d(z‘—l)Ad(i*I)
TT T i

a-1d(;_yyAd-)

12

then plug (5.3) into (7.3), we get

d@y =7 +

Thus we have a new update rule for d;) and «;), and this lead us to the final conjugate
gradient method

d(oy = 7(0)
rL o
(@) (@)
diy = d(i-1) (7.5)
o T-1)
TT. A
@7 (@)
Qi) = —p (7.6)
dl, Adg,
T(it1) = L) + @) de) (7.7)

Notice that this is basicly the same thing as "almost conjugate gradient method" except that it
save some computation by exploiting the innate property of the relationship between d;)’s and
7(;)’s. Figure 10 and Figure 11 shows the progress of conjugate gradient method on the running
example with different starting points. They are almost the same as Figure 8 and Figure 9
because these two algorithms are doing the same thing, but with different complexities.

8 8

-2 -2

-6 . : . . . -6

Figure 10: Conjugate gradient method

13

8 8

6 6

44 44

24 u=AV?g 5 2

, (O

24 -2

_a] 4l

-6 T T T T T —6 T T T T T
) -2 0 2 4 6 8 -4 -2 0 2 4 6

Figure 11: Conjugate gradient method

Figure 12 shows the residual norm and error norm when apply conjugate gradient method to
a 2000x2000 system.

Residual norm Error norm

120000 A
40

100000 A
30 1

80000

60000 -
20

40000 A
10 -

20000 A
0 L 0-

0 200 400 600 800 0 200 400 600 800

Figure 12: Conjugate gradient method on 2000x2000 system

14

8 Conclusion

This note is an introduction to the intricate conjugate gradient descent. Hopefully I have made
the core idea of cg method clear to you. However, there are a lot of things about cg method
that’s not included in this note like convergence analysis of cg method, krylov space and spectral
analysis of krylov space (this is available in EE364Db).

As you can see, the awfully complicated conjugate gradient method is just steepest descent
with orthogonal searching direction under a change of coordinate. Actually, not just in cg method,
the technique of changing coordinate applies everywhere in math and engineering. Some examples
are listed

o Gradient descent + changing coordinate (according to ellipsoid induced by local hessian)
= Newton’s method

o Cutting-plane method + changing coordinate (according to ignorance ellipsoid) = Ellipsoid
method

o Fourier transform of radial function+ changing coordinate (cartesian to polar) = Radon
Transform

The philosophy here is, many sophisticated things are just combination of many simple but
clever things. The hard part is what simples things to use and how to assemble these simple
things. The problem itself, in some sense, gives you hints about what technique to use(changing
coordinates, Fourier analysis, etc) with its properties (asymmetric, radial, periodic, etc. In
the example of cg method, we change coordinate to turn an "inhomogeneous' ellipsoid into a
"homogeneous" circle/ball). In other words, the solution to a problem is right there in the
problem itself, however, identifying those properties and correctly applying those techniques to
the very specific problem is where being smart makes the difference.

15

	Linear Equation and Quadratic Form
	Steepest Descent
	Conjugate Directions
	Steepest Descent and Conjugate Directions
	Almost Conjugate Gradient Method
	Simplifing "Almost CG Method"
	Finally, Conjugate Gradient Method
	Conclusion

